Metamath Proof Explorer


Theorem mplmulr

Description: Value of multiplication in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplplusg.y Y=ImPolyR
mplplusg.s S=ImPwSerR
mplmulr.n ·˙=Y
Assertion mplmulr ·˙=S

Proof

Step Hyp Ref Expression
1 mplplusg.y Y=ImPolyR
2 mplplusg.s S=ImPwSerR
3 mplmulr.n ·˙=Y
4 fvex BaseYV
5 eqid BaseY=BaseY
6 1 2 5 mplval2 Y=S𝑠BaseY
7 eqid S=S
8 6 7 ressmulr BaseYVS=Y
9 4 8 ax-mp S=Y
10 3 9 eqtr4i ·˙=S