Metamath Proof Explorer


Theorem psr0

Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S=ImPwSerR
psrgrp.i φIV
psrgrp.r φRGrp
psr0.d D=f0I|f-1Fin
psr0.o O=0R
psr0.z 0˙=0S
Assertion psr0 φ0˙=D×O

Proof

Step Hyp Ref Expression
1 psrgrp.s S=ImPwSerR
2 psrgrp.i φIV
3 psrgrp.r φRGrp
4 psr0.d D=f0I|f-1Fin
5 psr0.o O=0R
6 psr0.z 0˙=0S
7 eqid BaseS=BaseS
8 eqid +S=+S
9 1 2 3 4 5 7 psr0cl φD×OBaseS
10 1 2 3 4 5 7 8 9 psr0lid φD×O+SD×O=D×O
11 1 2 3 psrgrp φSGrp
12 7 8 6 grpid SGrpD×OBaseSD×O+SD×O=D×O0˙=D×O
13 11 9 12 syl2anc φD×O+SD×O=D×O0˙=D×O
14 10 13 mpbid φ0˙=D×O