Metamath Proof Explorer


Theorem psr0lid

Description: The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S=ImPwSerR
psrgrp.i φIV
psrgrp.r φRGrp
psr0cl.d D=f0I|f-1Fin
psr0cl.o 0˙=0R
psr0cl.b B=BaseS
psr0lid.p +˙=+S
psr0lid.x φXB
Assertion psr0lid φD×0˙+˙X=X

Proof

Step Hyp Ref Expression
1 psrgrp.s S=ImPwSerR
2 psrgrp.i φIV
3 psrgrp.r φRGrp
4 psr0cl.d D=f0I|f-1Fin
5 psr0cl.o 0˙=0R
6 psr0cl.b B=BaseS
7 psr0lid.p +˙=+S
8 psr0lid.x φXB
9 eqid +R=+R
10 1 2 3 4 5 6 psr0cl φD×0˙B
11 1 6 9 7 10 8 psradd φD×0˙+˙X=D×0˙+RfX
12 ovex 0IV
13 4 12 rabex2 DV
14 13 a1i φDV
15 eqid BaseR=BaseR
16 1 15 4 6 8 psrelbas φX:DBaseR
17 5 fvexi 0˙V
18 17 a1i φ0˙V
19 15 9 5 grplid RGrpxBaseR0˙+Rx=x
20 3 19 sylan φxBaseR0˙+Rx=x
21 14 16 18 20 caofid0l φD×0˙+RfX=X
22 11 21 eqtrd φD×0˙+˙X=X