| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpl0.p |
|- P = ( I mPoly R ) |
| 2 |
|
mpl0.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
| 3 |
|
mpl0.o |
|- O = ( 0g ` R ) |
| 4 |
|
mpl0.z |
|- .0. = ( 0g ` P ) |
| 5 |
|
mpl0.i |
|- ( ph -> I e. W ) |
| 6 |
|
mpl0.r |
|- ( ph -> R e. Grp ) |
| 7 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
| 8 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 9 |
7 1 8 5 6
|
mplsubg |
|- ( ph -> ( Base ` P ) e. ( SubGrp ` ( I mPwSer R ) ) ) |
| 10 |
1 7 8
|
mplval2 |
|- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
| 11 |
|
eqid |
|- ( 0g ` ( I mPwSer R ) ) = ( 0g ` ( I mPwSer R ) ) |
| 12 |
10 11
|
subg0 |
|- ( ( Base ` P ) e. ( SubGrp ` ( I mPwSer R ) ) -> ( 0g ` ( I mPwSer R ) ) = ( 0g ` P ) ) |
| 13 |
9 12
|
syl |
|- ( ph -> ( 0g ` ( I mPwSer R ) ) = ( 0g ` P ) ) |
| 14 |
7 5 6 2 3 11
|
psr0 |
|- ( ph -> ( 0g ` ( I mPwSer R ) ) = ( D X. { O } ) ) |
| 15 |
13 14
|
eqtr3d |
|- ( ph -> ( 0g ` P ) = ( D X. { O } ) ) |
| 16 |
4 15
|
eqtrid |
|- ( ph -> .0. = ( D X. { O } ) ) |