Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpwscmat.p |
|- P = ( Poly1 ` R ) |
2 |
|
pmatcollpwscmat.c |
|- C = ( N Mat P ) |
3 |
|
pmatcollpwscmat.b |
|- B = ( Base ` C ) |
4 |
|
pmatcollpwscmat.m1 |
|- .* = ( .s ` C ) |
5 |
|
pmatcollpwscmat.e1 |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
6 |
|
pmatcollpwscmat.x |
|- X = ( var1 ` R ) |
7 |
|
pmatcollpwscmat.t |
|- T = ( N matToPolyMat R ) |
8 |
|
pmatcollpwscmat.a |
|- A = ( N Mat R ) |
9 |
|
pmatcollpwscmat.d |
|- D = ( Base ` A ) |
10 |
|
pmatcollpwscmat.u |
|- U = ( algSc ` P ) |
11 |
|
pmatcollpwscmat.k |
|- K = ( Base ` R ) |
12 |
|
pmatcollpwscmat.e2 |
|- E = ( Base ` P ) |
13 |
|
pmatcollpwscmat.s |
|- S = ( algSc ` P ) |
14 |
|
pmatcollpwscmat.1 |
|- .1. = ( 1r ` C ) |
15 |
|
pmatcollpwscmat.m2 |
|- M = ( Q .* .1. ) |
16 |
15
|
oveqi |
|- ( a M b ) = ( a ( Q .* .1. ) b ) |
17 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
18 |
17
|
anim2i |
|- ( ( N e. Fin /\ R e. Ring ) -> ( N e. Fin /\ P e. Ring ) ) |
19 |
|
simpr |
|- ( ( L e. NN0 /\ Q e. E ) -> Q e. E ) |
20 |
18 19
|
anim12i |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( N e. Fin /\ P e. Ring ) /\ Q e. E ) ) |
21 |
|
df-3an |
|- ( ( N e. Fin /\ P e. Ring /\ Q e. E ) <-> ( ( N e. Fin /\ P e. Ring ) /\ Q e. E ) ) |
22 |
20 21
|
sylibr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( N e. Fin /\ P e. Ring /\ Q e. E ) ) |
23 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
24 |
2 12 23 14 4
|
scmatscmide |
|- ( ( ( N e. Fin /\ P e. Ring /\ Q e. E ) /\ ( a e. N /\ b e. N ) ) -> ( a ( Q .* .1. ) b ) = if ( a = b , Q , ( 0g ` P ) ) ) |
25 |
22 24
|
sylan |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( a ( Q .* .1. ) b ) = if ( a = b , Q , ( 0g ` P ) ) ) |
26 |
16 25
|
eqtrid |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( a M b ) = if ( a = b , Q , ( 0g ` P ) ) ) |
27 |
26
|
fveq2d |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( coe1 ` ( a M b ) ) = ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) ) |
28 |
27
|
fveq1d |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( coe1 ` ( a M b ) ) ` L ) = ( ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) ` L ) ) |
29 |
|
fvif |
|- ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) = if ( a = b , ( coe1 ` Q ) , ( coe1 ` ( 0g ` P ) ) ) |
30 |
29
|
fveq1i |
|- ( ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) ` L ) = ( if ( a = b , ( coe1 ` Q ) , ( coe1 ` ( 0g ` P ) ) ) ` L ) |
31 |
|
iffv |
|- ( if ( a = b , ( coe1 ` Q ) , ( coe1 ` ( 0g ` P ) ) ) ` L ) = if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) |
32 |
30 31
|
eqtri |
|- ( ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) ` L ) = if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) |
33 |
28 32
|
eqtrdi |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( coe1 ` ( a M b ) ) ` L ) = if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) ) |
34 |
33
|
oveq1d |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( ( coe1 ` ( a M b ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
35 |
|
ovif |
|- ( if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
36 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
37 |
1 23 36
|
coe1z |
|- ( R e. Ring -> ( coe1 ` ( 0g ` P ) ) = ( NN0 X. { ( 0g ` R ) } ) ) |
38 |
37
|
ad2antlr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( coe1 ` ( 0g ` P ) ) = ( NN0 X. { ( 0g ` R ) } ) ) |
39 |
38
|
fveq1d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( coe1 ` ( 0g ` P ) ) ` L ) = ( ( NN0 X. { ( 0g ` R ) } ) ` L ) ) |
40 |
|
fvexd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` R ) e. _V ) |
41 |
|
simpl |
|- ( ( L e. NN0 /\ Q e. E ) -> L e. NN0 ) |
42 |
40 41
|
anim12i |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( 0g ` R ) e. _V /\ L e. NN0 ) ) |
43 |
|
fvconst2g |
|- ( ( ( 0g ` R ) e. _V /\ L e. NN0 ) -> ( ( NN0 X. { ( 0g ` R ) } ) ` L ) = ( 0g ` R ) ) |
44 |
42 43
|
syl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( NN0 X. { ( 0g ` R ) } ) ` L ) = ( 0g ` R ) ) |
45 |
39 44
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( coe1 ` ( 0g ` P ) ) ` L ) = ( 0g ` R ) ) |
46 |
45
|
oveq1d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
47 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
48 |
47
|
ad2antlr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> P e. LMod ) |
49 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
50 |
49
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
51 |
17 50
|
syl |
|- ( R e. Ring -> ( mulGrp ` P ) e. Mnd ) |
52 |
|
0nn0 |
|- 0 e. NN0 |
53 |
52
|
a1i |
|- ( R e. Ring -> 0 e. NN0 ) |
54 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
55 |
54 1 12
|
vr1cl |
|- ( R e. Ring -> ( var1 ` R ) e. E ) |
56 |
49 12
|
mgpbas |
|- E = ( Base ` ( mulGrp ` P ) ) |
57 |
|
eqid |
|- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
58 |
56 57
|
mulgnn0cl |
|- ( ( ( mulGrp ` P ) e. Mnd /\ 0 e. NN0 /\ ( var1 ` R ) e. E ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. E ) |
59 |
51 53 55 58
|
syl3anc |
|- ( R e. Ring -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. E ) |
60 |
59
|
ad2antlr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. E ) |
61 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
62 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
63 |
|
eqid |
|- ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) |
64 |
12 61 62 63 23
|
lmod0vs |
|- ( ( P e. LMod /\ ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. E ) -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) |
65 |
48 60 64
|
syl2anc |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) |
66 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
67 |
66
|
adantl |
|- ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` P ) ) |
68 |
67
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
69 |
68
|
oveq1d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
70 |
69
|
eqeq1d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) <-> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) ) |
71 |
70
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) <-> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) ) |
72 |
65 71
|
mpbird |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) |
73 |
46 72
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) |
74 |
73
|
ifeq2d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) ) |
75 |
74
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) ) |
76 |
35 75
|
eqtrid |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) ) |
77 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( L e. NN0 /\ Q e. E ) ) |
78 |
77
|
ancomd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( Q e. E /\ L e. NN0 ) ) |
79 |
|
eqid |
|- ( coe1 ` Q ) = ( coe1 ` Q ) |
80 |
79 12 1 11
|
coe1fvalcl |
|- ( ( Q e. E /\ L e. NN0 ) -> ( ( coe1 ` Q ) ` L ) e. K ) |
81 |
78 80
|
syl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( coe1 ` Q ) ` L ) e. K ) |
82 |
66
|
eqcomd |
|- ( R e. Ring -> ( Scalar ` P ) = R ) |
83 |
82
|
adantl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` P ) = R ) |
84 |
83
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) |
85 |
84 11
|
eqtr4di |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( Scalar ` P ) ) = K ) |
86 |
85
|
eleq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( ( coe1 ` Q ) ` L ) e. ( Base ` ( Scalar ` P ) ) <-> ( ( coe1 ` Q ) ` L ) e. K ) ) |
87 |
86
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` Q ) ` L ) e. ( Base ` ( Scalar ` P ) ) <-> ( ( coe1 ` Q ) ` L ) e. K ) ) |
88 |
81 87
|
mpbird |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( coe1 ` Q ) ` L ) e. ( Base ` ( Scalar ` P ) ) ) |
89 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
90 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
91 |
10 61 89 62 90
|
asclval |
|- ( ( ( coe1 ` Q ) ` L ) e. ( Base ` ( Scalar ` P ) ) -> ( U ` ( ( coe1 ` Q ) ` L ) ) = ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 1r ` P ) ) ) |
92 |
88 91
|
syl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( U ` ( ( coe1 ` Q ) ` L ) ) = ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 1r ` P ) ) ) |
93 |
1 54 49 57
|
ply1idvr1 |
|- ( R e. Ring -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) = ( 1r ` P ) ) |
94 |
93
|
eqcomd |
|- ( R e. Ring -> ( 1r ` P ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) |
95 |
94
|
ad2antlr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( 1r ` P ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) |
96 |
95
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 1r ` P ) ) = ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
97 |
92 96
|
eqtr2d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( U ` ( ( coe1 ` Q ) ` L ) ) ) |
98 |
97
|
ifeq1d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) = if ( a = b , ( U ` ( ( coe1 ` Q ) ` L ) ) , ( 0g ` P ) ) ) |
99 |
98
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) = if ( a = b , ( U ` ( ( coe1 ` Q ) ` L ) ) , ( 0g ` P ) ) ) |
100 |
34 76 99
|
3eqtrd |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( ( coe1 ` ( a M b ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = if ( a = b , ( U ` ( ( coe1 ` Q ) ` L ) ) , ( 0g ` P ) ) ) |