| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpwscmat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pmatcollpwscmat.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pmatcollpwscmat.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pmatcollpwscmat.m1 |  |-  .* = ( .s ` C ) | 
						
							| 5 |  | pmatcollpwscmat.e1 |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 6 |  | pmatcollpwscmat.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | pmatcollpwscmat.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 8 |  | pmatcollpwscmat.a |  |-  A = ( N Mat R ) | 
						
							| 9 |  | pmatcollpwscmat.d |  |-  D = ( Base ` A ) | 
						
							| 10 |  | pmatcollpwscmat.u |  |-  U = ( algSc ` P ) | 
						
							| 11 |  | pmatcollpwscmat.k |  |-  K = ( Base ` R ) | 
						
							| 12 |  | pmatcollpwscmat.e2 |  |-  E = ( Base ` P ) | 
						
							| 13 |  | pmatcollpwscmat.s |  |-  S = ( algSc ` P ) | 
						
							| 14 |  | pmatcollpwscmat.1 |  |-  .1. = ( 1r ` C ) | 
						
							| 15 |  | pmatcollpwscmat.m2 |  |-  M = ( Q .* .1. ) | 
						
							| 16 | 15 | oveqi |  |-  ( a M b ) = ( a ( Q .* .1. ) b ) | 
						
							| 17 | 1 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 18 | 17 | anim2i |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( N e. Fin /\ P e. Ring ) ) | 
						
							| 19 |  | simpr |  |-  ( ( L e. NN0 /\ Q e. E ) -> Q e. E ) | 
						
							| 20 | 18 19 | anim12i |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( N e. Fin /\ P e. Ring ) /\ Q e. E ) ) | 
						
							| 21 |  | df-3an |  |-  ( ( N e. Fin /\ P e. Ring /\ Q e. E ) <-> ( ( N e. Fin /\ P e. Ring ) /\ Q e. E ) ) | 
						
							| 22 | 20 21 | sylibr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( N e. Fin /\ P e. Ring /\ Q e. E ) ) | 
						
							| 23 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 24 | 2 12 23 14 4 | scmatscmide |  |-  ( ( ( N e. Fin /\ P e. Ring /\ Q e. E ) /\ ( a e. N /\ b e. N ) ) -> ( a ( Q .* .1. ) b ) = if ( a = b , Q , ( 0g ` P ) ) ) | 
						
							| 25 | 22 24 | sylan |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( a ( Q .* .1. ) b ) = if ( a = b , Q , ( 0g ` P ) ) ) | 
						
							| 26 | 16 25 | eqtrid |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( a M b ) = if ( a = b , Q , ( 0g ` P ) ) ) | 
						
							| 27 | 26 | fveq2d |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( coe1 ` ( a M b ) ) = ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) ) | 
						
							| 28 | 27 | fveq1d |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( coe1 ` ( a M b ) ) ` L ) = ( ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) ` L ) ) | 
						
							| 29 |  | fvif |  |-  ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) = if ( a = b , ( coe1 ` Q ) , ( coe1 ` ( 0g ` P ) ) ) | 
						
							| 30 | 29 | fveq1i |  |-  ( ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) ` L ) = ( if ( a = b , ( coe1 ` Q ) , ( coe1 ` ( 0g ` P ) ) ) ` L ) | 
						
							| 31 |  | iffv |  |-  ( if ( a = b , ( coe1 ` Q ) , ( coe1 ` ( 0g ` P ) ) ) ` L ) = if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) | 
						
							| 32 | 30 31 | eqtri |  |-  ( ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) ` L ) = if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) | 
						
							| 33 | 28 32 | eqtrdi |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( coe1 ` ( a M b ) ) ` L ) = if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( ( coe1 ` ( a M b ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) | 
						
							| 35 |  | ovif |  |-  ( if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) | 
						
							| 36 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 37 | 1 23 36 | coe1z |  |-  ( R e. Ring -> ( coe1 ` ( 0g ` P ) ) = ( NN0 X. { ( 0g ` R ) } ) ) | 
						
							| 38 | 37 | ad2antlr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( coe1 ` ( 0g ` P ) ) = ( NN0 X. { ( 0g ` R ) } ) ) | 
						
							| 39 | 38 | fveq1d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( coe1 ` ( 0g ` P ) ) ` L ) = ( ( NN0 X. { ( 0g ` R ) } ) ` L ) ) | 
						
							| 40 |  | fvexd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` R ) e. _V ) | 
						
							| 41 |  | simpl |  |-  ( ( L e. NN0 /\ Q e. E ) -> L e. NN0 ) | 
						
							| 42 | 40 41 | anim12i |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( 0g ` R ) e. _V /\ L e. NN0 ) ) | 
						
							| 43 |  | fvconst2g |  |-  ( ( ( 0g ` R ) e. _V /\ L e. NN0 ) -> ( ( NN0 X. { ( 0g ` R ) } ) ` L ) = ( 0g ` R ) ) | 
						
							| 44 | 42 43 | syl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( NN0 X. { ( 0g ` R ) } ) ` L ) = ( 0g ` R ) ) | 
						
							| 45 | 39 44 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( coe1 ` ( 0g ` P ) ) ` L ) = ( 0g ` R ) ) | 
						
							| 46 | 45 | oveq1d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) | 
						
							| 47 | 1 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 48 | 47 | ad2antlr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> P e. LMod ) | 
						
							| 49 |  | eqid |  |-  ( mulGrp ` P ) = ( mulGrp ` P ) | 
						
							| 50 | 49 12 | mgpbas |  |-  E = ( Base ` ( mulGrp ` P ) ) | 
						
							| 51 |  | eqid |  |-  ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) | 
						
							| 52 | 49 | ringmgp |  |-  ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 53 | 17 52 | syl |  |-  ( R e. Ring -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 54 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 55 | 54 | a1i |  |-  ( R e. Ring -> 0 e. NN0 ) | 
						
							| 56 |  | eqid |  |-  ( var1 ` R ) = ( var1 ` R ) | 
						
							| 57 | 56 1 12 | vr1cl |  |-  ( R e. Ring -> ( var1 ` R ) e. E ) | 
						
							| 58 | 50 51 53 55 57 | mulgnn0cld |  |-  ( R e. Ring -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. E ) | 
						
							| 59 | 58 | ad2antlr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. E ) | 
						
							| 60 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 61 |  | eqid |  |-  ( .s ` P ) = ( .s ` P ) | 
						
							| 62 |  | eqid |  |-  ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) | 
						
							| 63 | 12 60 61 62 23 | lmod0vs |  |-  ( ( P e. LMod /\ ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. E ) -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) | 
						
							| 64 | 48 59 63 | syl2anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) | 
						
							| 65 | 1 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` P ) ) | 
						
							| 66 | 65 | adantl |  |-  ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` P ) ) | 
						
							| 67 | 66 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) | 
						
							| 68 | 67 | oveq1d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) | 
						
							| 69 | 68 | eqeq1d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) <-> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) <-> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) ) | 
						
							| 71 | 64 70 | mpbird |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) | 
						
							| 72 | 46 71 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) | 
						
							| 73 | 72 | ifeq2d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) ) | 
						
							| 75 | 35 74 | eqtrid |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) ) | 
						
							| 76 |  | simpr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( L e. NN0 /\ Q e. E ) ) | 
						
							| 77 | 76 | ancomd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( Q e. E /\ L e. NN0 ) ) | 
						
							| 78 |  | eqid |  |-  ( coe1 ` Q ) = ( coe1 ` Q ) | 
						
							| 79 | 78 12 1 11 | coe1fvalcl |  |-  ( ( Q e. E /\ L e. NN0 ) -> ( ( coe1 ` Q ) ` L ) e. K ) | 
						
							| 80 | 77 79 | syl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( coe1 ` Q ) ` L ) e. K ) | 
						
							| 81 | 65 | eqcomd |  |-  ( R e. Ring -> ( Scalar ` P ) = R ) | 
						
							| 82 | 81 | adantl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` P ) = R ) | 
						
							| 83 | 82 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) | 
						
							| 84 | 83 11 | eqtr4di |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( Scalar ` P ) ) = K ) | 
						
							| 85 | 84 | eleq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( ( coe1 ` Q ) ` L ) e. ( Base ` ( Scalar ` P ) ) <-> ( ( coe1 ` Q ) ` L ) e. K ) ) | 
						
							| 86 | 85 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` Q ) ` L ) e. ( Base ` ( Scalar ` P ) ) <-> ( ( coe1 ` Q ) ` L ) e. K ) ) | 
						
							| 87 | 80 86 | mpbird |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( coe1 ` Q ) ` L ) e. ( Base ` ( Scalar ` P ) ) ) | 
						
							| 88 |  | eqid |  |-  ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) | 
						
							| 89 |  | eqid |  |-  ( 1r ` P ) = ( 1r ` P ) | 
						
							| 90 | 10 60 88 61 89 | asclval |  |-  ( ( ( coe1 ` Q ) ` L ) e. ( Base ` ( Scalar ` P ) ) -> ( U ` ( ( coe1 ` Q ) ` L ) ) = ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 1r ` P ) ) ) | 
						
							| 91 | 87 90 | syl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( U ` ( ( coe1 ` Q ) ` L ) ) = ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 1r ` P ) ) ) | 
						
							| 92 | 1 56 49 51 | ply1idvr1 |  |-  ( R e. Ring -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) = ( 1r ` P ) ) | 
						
							| 93 | 92 | eqcomd |  |-  ( R e. Ring -> ( 1r ` P ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) | 
						
							| 94 | 93 | ad2antlr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( 1r ` P ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 1r ` P ) ) = ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) | 
						
							| 96 | 91 95 | eqtr2d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( U ` ( ( coe1 ` Q ) ` L ) ) ) | 
						
							| 97 | 96 | ifeq1d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) = if ( a = b , ( U ` ( ( coe1 ` Q ) ` L ) ) , ( 0g ` P ) ) ) | 
						
							| 98 | 97 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) = if ( a = b , ( U ` ( ( coe1 ` Q ) ` L ) ) , ( 0g ` P ) ) ) | 
						
							| 99 | 34 75 98 | 3eqtrd |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( ( coe1 ` ( a M b ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = if ( a = b , ( U ` ( ( coe1 ` Q ) ` L ) ) , ( 0g ` P ) ) ) |