| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpwscmat.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
pmatcollpwscmat.c |
|- C = ( N Mat P ) |
| 3 |
|
pmatcollpwscmat.b |
|- B = ( Base ` C ) |
| 4 |
|
pmatcollpwscmat.m1 |
|- .* = ( .s ` C ) |
| 5 |
|
pmatcollpwscmat.e1 |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
| 6 |
|
pmatcollpwscmat.x |
|- X = ( var1 ` R ) |
| 7 |
|
pmatcollpwscmat.t |
|- T = ( N matToPolyMat R ) |
| 8 |
|
pmatcollpwscmat.a |
|- A = ( N Mat R ) |
| 9 |
|
pmatcollpwscmat.d |
|- D = ( Base ` A ) |
| 10 |
|
pmatcollpwscmat.u |
|- U = ( algSc ` P ) |
| 11 |
|
pmatcollpwscmat.k |
|- K = ( Base ` R ) |
| 12 |
|
pmatcollpwscmat.e2 |
|- E = ( Base ` P ) |
| 13 |
|
pmatcollpwscmat.s |
|- S = ( algSc ` P ) |
| 14 |
|
pmatcollpwscmat.1 |
|- .1. = ( 1r ` C ) |
| 15 |
|
pmatcollpwscmat.m2 |
|- M = ( Q .* .1. ) |
| 16 |
15
|
oveqi |
|- ( a M b ) = ( a ( Q .* .1. ) b ) |
| 17 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 18 |
17
|
anim2i |
|- ( ( N e. Fin /\ R e. Ring ) -> ( N e. Fin /\ P e. Ring ) ) |
| 19 |
|
simpr |
|- ( ( L e. NN0 /\ Q e. E ) -> Q e. E ) |
| 20 |
18 19
|
anim12i |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( N e. Fin /\ P e. Ring ) /\ Q e. E ) ) |
| 21 |
|
df-3an |
|- ( ( N e. Fin /\ P e. Ring /\ Q e. E ) <-> ( ( N e. Fin /\ P e. Ring ) /\ Q e. E ) ) |
| 22 |
20 21
|
sylibr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( N e. Fin /\ P e. Ring /\ Q e. E ) ) |
| 23 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 24 |
2 12 23 14 4
|
scmatscmide |
|- ( ( ( N e. Fin /\ P e. Ring /\ Q e. E ) /\ ( a e. N /\ b e. N ) ) -> ( a ( Q .* .1. ) b ) = if ( a = b , Q , ( 0g ` P ) ) ) |
| 25 |
22 24
|
sylan |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( a ( Q .* .1. ) b ) = if ( a = b , Q , ( 0g ` P ) ) ) |
| 26 |
16 25
|
eqtrid |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( a M b ) = if ( a = b , Q , ( 0g ` P ) ) ) |
| 27 |
26
|
fveq2d |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( coe1 ` ( a M b ) ) = ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) ) |
| 28 |
27
|
fveq1d |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( coe1 ` ( a M b ) ) ` L ) = ( ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) ` L ) ) |
| 29 |
|
fvif |
|- ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) = if ( a = b , ( coe1 ` Q ) , ( coe1 ` ( 0g ` P ) ) ) |
| 30 |
29
|
fveq1i |
|- ( ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) ` L ) = ( if ( a = b , ( coe1 ` Q ) , ( coe1 ` ( 0g ` P ) ) ) ` L ) |
| 31 |
|
iffv |
|- ( if ( a = b , ( coe1 ` Q ) , ( coe1 ` ( 0g ` P ) ) ) ` L ) = if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) |
| 32 |
30 31
|
eqtri |
|- ( ( coe1 ` if ( a = b , Q , ( 0g ` P ) ) ) ` L ) = if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) |
| 33 |
28 32
|
eqtrdi |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( coe1 ` ( a M b ) ) ` L ) = if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) ) |
| 34 |
33
|
oveq1d |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( ( coe1 ` ( a M b ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
| 35 |
|
ovif |
|- ( if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
| 36 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 37 |
1 23 36
|
coe1z |
|- ( R e. Ring -> ( coe1 ` ( 0g ` P ) ) = ( NN0 X. { ( 0g ` R ) } ) ) |
| 38 |
37
|
ad2antlr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( coe1 ` ( 0g ` P ) ) = ( NN0 X. { ( 0g ` R ) } ) ) |
| 39 |
38
|
fveq1d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( coe1 ` ( 0g ` P ) ) ` L ) = ( ( NN0 X. { ( 0g ` R ) } ) ` L ) ) |
| 40 |
|
fvexd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` R ) e. _V ) |
| 41 |
|
simpl |
|- ( ( L e. NN0 /\ Q e. E ) -> L e. NN0 ) |
| 42 |
40 41
|
anim12i |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( 0g ` R ) e. _V /\ L e. NN0 ) ) |
| 43 |
|
fvconst2g |
|- ( ( ( 0g ` R ) e. _V /\ L e. NN0 ) -> ( ( NN0 X. { ( 0g ` R ) } ) ` L ) = ( 0g ` R ) ) |
| 44 |
42 43
|
syl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( NN0 X. { ( 0g ` R ) } ) ` L ) = ( 0g ` R ) ) |
| 45 |
39 44
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( coe1 ` ( 0g ` P ) ) ` L ) = ( 0g ` R ) ) |
| 46 |
45
|
oveq1d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
| 47 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 48 |
47
|
ad2antlr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> P e. LMod ) |
| 49 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
| 50 |
49 12
|
mgpbas |
|- E = ( Base ` ( mulGrp ` P ) ) |
| 51 |
|
eqid |
|- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
| 52 |
49
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
| 53 |
17 52
|
syl |
|- ( R e. Ring -> ( mulGrp ` P ) e. Mnd ) |
| 54 |
|
0nn0 |
|- 0 e. NN0 |
| 55 |
54
|
a1i |
|- ( R e. Ring -> 0 e. NN0 ) |
| 56 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
| 57 |
56 1 12
|
vr1cl |
|- ( R e. Ring -> ( var1 ` R ) e. E ) |
| 58 |
50 51 53 55 57
|
mulgnn0cld |
|- ( R e. Ring -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. E ) |
| 59 |
58
|
ad2antlr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. E ) |
| 60 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 61 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 62 |
|
eqid |
|- ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) |
| 63 |
12 60 61 62 23
|
lmod0vs |
|- ( ( P e. LMod /\ ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. E ) -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) |
| 64 |
48 59 63
|
syl2anc |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) |
| 65 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 66 |
65
|
adantl |
|- ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` P ) ) |
| 67 |
66
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
| 68 |
67
|
oveq1d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
| 69 |
68
|
eqeq1d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) <-> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) ) |
| 70 |
69
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) <-> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) ) |
| 71 |
64 70
|
mpbird |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( 0g ` R ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) |
| 72 |
46 71
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0g ` P ) ) |
| 73 |
72
|
ifeq2d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) ) |
| 74 |
73
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( ( ( coe1 ` ( 0g ` P ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) ) |
| 75 |
35 74
|
eqtrid |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( if ( a = b , ( ( coe1 ` Q ) ` L ) , ( ( coe1 ` ( 0g ` P ) ) ` L ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) ) |
| 76 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( L e. NN0 /\ Q e. E ) ) |
| 77 |
76
|
ancomd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( Q e. E /\ L e. NN0 ) ) |
| 78 |
|
eqid |
|- ( coe1 ` Q ) = ( coe1 ` Q ) |
| 79 |
78 12 1 11
|
coe1fvalcl |
|- ( ( Q e. E /\ L e. NN0 ) -> ( ( coe1 ` Q ) ` L ) e. K ) |
| 80 |
77 79
|
syl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( coe1 ` Q ) ` L ) e. K ) |
| 81 |
65
|
eqcomd |
|- ( R e. Ring -> ( Scalar ` P ) = R ) |
| 82 |
81
|
adantl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` P ) = R ) |
| 83 |
82
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) |
| 84 |
83 11
|
eqtr4di |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( Scalar ` P ) ) = K ) |
| 85 |
84
|
eleq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( ( coe1 ` Q ) ` L ) e. ( Base ` ( Scalar ` P ) ) <-> ( ( coe1 ` Q ) ` L ) e. K ) ) |
| 86 |
85
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` Q ) ` L ) e. ( Base ` ( Scalar ` P ) ) <-> ( ( coe1 ` Q ) ` L ) e. K ) ) |
| 87 |
80 86
|
mpbird |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( coe1 ` Q ) ` L ) e. ( Base ` ( Scalar ` P ) ) ) |
| 88 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 89 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 90 |
10 60 88 61 89
|
asclval |
|- ( ( ( coe1 ` Q ) ` L ) e. ( Base ` ( Scalar ` P ) ) -> ( U ` ( ( coe1 ` Q ) ` L ) ) = ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 1r ` P ) ) ) |
| 91 |
87 90
|
syl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( U ` ( ( coe1 ` Q ) ` L ) ) = ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 1r ` P ) ) ) |
| 92 |
1 56 49 51
|
ply1idvr1 |
|- ( R e. Ring -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) = ( 1r ` P ) ) |
| 93 |
92
|
eqcomd |
|- ( R e. Ring -> ( 1r ` P ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) |
| 94 |
93
|
ad2antlr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( 1r ` P ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) |
| 95 |
94
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 1r ` P ) ) = ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
| 96 |
91 95
|
eqtr2d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( U ` ( ( coe1 ` Q ) ` L ) ) ) |
| 97 |
96
|
ifeq1d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) -> if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) = if ( a = b , ( U ` ( ( coe1 ` Q ) ` L ) ) , ( 0g ` P ) ) ) |
| 98 |
97
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> if ( a = b , ( ( ( coe1 ` Q ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) , ( 0g ` P ) ) = if ( a = b , ( U ` ( ( coe1 ` Q ) ` L ) ) , ( 0g ` P ) ) ) |
| 99 |
34 75 98
|
3eqtrd |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( L e. NN0 /\ Q e. E ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( ( coe1 ` ( a M b ) ) ` L ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = if ( a = b , ( U ` ( ( coe1 ` Q ) ` L ) ) , ( 0g ` P ) ) ) |