| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpw.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpw.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpw.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 5 |  | pmatcollpw.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpw.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | pmatcollpw.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 |  | pmatcollpw3.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 9 |  | pmatcollpw3.d | ⊢ 𝐷  =  ( Base ‘ 𝐴 ) | 
						
							| 10 |  | pmatcollpw3fi1lem1.0 | ⊢  0   =  ( 0g ‘ 𝐴 ) | 
						
							| 11 |  | pmatcollpw3fi1lem1.h | ⊢ 𝐻  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝐺 ‘ 0 ) ,   0  ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 13 | 1 2 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring ) | 
						
							| 14 |  | ringmnd | ⊢ ( 𝐶  ∈  Ring  →  𝐶  ∈  Mnd ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Mnd ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  𝐶  ∈  Mnd ) | 
						
							| 17 |  | ringcmn | ⊢ ( 𝐶  ∈  Ring  →  𝐶  ∈  CMnd ) | 
						
							| 18 | 13 17 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  CMnd ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  𝐶  ∈  CMnd ) | 
						
							| 20 |  | snfi | ⊢ { 0 }  ∈  Fin | 
						
							| 21 | 20 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  { 0 }  ∈  Fin ) | 
						
							| 22 |  | simplll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  →  𝑁  ∈  Fin ) | 
						
							| 23 |  | simpllr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  →  𝑅  ∈  Ring ) | 
						
							| 24 |  | elmapi | ⊢ ( 𝐺  ∈  ( 𝐷  ↑m  { 0 } )  →  𝐺 : { 0 } ⟶ 𝐷 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  𝐺 : { 0 } ⟶ 𝐷 ) | 
						
							| 26 | 25 | ffvelcdmda | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  →  ( 𝐺 ‘ 𝑛 )  ∈  𝐷 ) | 
						
							| 27 |  | elsni | ⊢ ( 𝑛  ∈  { 0 }  →  𝑛  =  0 ) | 
						
							| 28 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 29 | 27 28 | eqeltrdi | ⊢ ( 𝑛  ∈  { 0 }  →  𝑛  ∈  ℕ0 ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  →  𝑛  ∈  ℕ0 ) | 
						
							| 31 | 8 9 7 1 2 3 4 5 6 | mat2pmatscmxcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( ( 𝐺 ‘ 𝑛 )  ∈  𝐷  ∧  𝑛  ∈  ℕ0 ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 32 | 22 23 26 30 31 | syl22anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ∀ 𝑛  ∈  { 0 } ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 34 | 3 19 21 33 | gsummptcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) )  ∈  𝐵 ) | 
						
							| 35 |  | eqid | ⊢ ( +g ‘ 𝐶 )  =  ( +g ‘ 𝐶 ) | 
						
							| 36 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 37 | 3 35 36 | mndrid | ⊢ ( ( 𝐶  ∈  Mnd  ∧  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) )  ∈  𝐵 )  →  ( ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 0g ‘ 𝐶 ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 38 | 16 34 37 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 0g ‘ 𝐶 ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 39 |  | fz0sn | ⊢ ( 0 ... 0 )  =  { 0 } | 
						
							| 40 | 39 | eqcomi | ⊢ { 0 }  =  ( 0 ... 0 ) | 
						
							| 41 | 40 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  { 0 }  =  ( 0 ... 0 ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  ∧  𝑙  =  𝑛 )  →  𝑙  =  𝑛 ) | 
						
							| 43 | 27 | ad2antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  ∧  𝑙  =  𝑛 )  →  𝑛  =  0 ) | 
						
							| 44 | 42 43 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  ∧  𝑙  =  𝑛 )  →  𝑙  =  0 ) | 
						
							| 45 | 44 | iftrued | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  ∧  𝑙  =  𝑛 )  →  if ( 𝑙  =  0 ,  ( 𝐺 ‘ 0 ) ,   0  )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 46 |  | fveq2 | ⊢ ( 𝑛  =  0  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 47 | 46 | eqcomd | ⊢ ( 𝑛  =  0  →  ( 𝐺 ‘ 0 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 48 | 27 47 | syl | ⊢ ( 𝑛  ∈  { 0 }  →  ( 𝐺 ‘ 0 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 49 | 48 | ad2antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  ∧  𝑙  =  𝑛 )  →  ( 𝐺 ‘ 0 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 50 | 45 49 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  ∧  𝑙  =  𝑛 )  →  if ( 𝑙  =  0 ,  ( 𝐺 ‘ 0 ) ,   0  )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 51 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 52 | 51 | a1i | ⊢ ( 𝑛  =  0  →  1  ∈  ℕ0 ) | 
						
							| 53 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 54 | 52 53 | eleqtrdi | ⊢ ( 𝑛  =  0  →  1  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 55 |  | eluzfz1 | ⊢ ( 1  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... 1 ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( 𝑛  =  0  →  0  ∈  ( 0 ... 1 ) ) | 
						
							| 57 |  | eleq1 | ⊢ ( 𝑛  =  0  →  ( 𝑛  ∈  ( 0 ... 1 )  ↔  0  ∈  ( 0 ... 1 ) ) ) | 
						
							| 58 | 56 57 | mpbird | ⊢ ( 𝑛  =  0  →  𝑛  ∈  ( 0 ... 1 ) ) | 
						
							| 59 | 27 58 | syl | ⊢ ( 𝑛  ∈  { 0 }  →  𝑛  ∈  ( 0 ... 1 ) ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  →  𝑛  ∈  ( 0 ... 1 ) ) | 
						
							| 61 |  | ffvelcdm | ⊢ ( ( 𝐺 : { 0 } ⟶ 𝐷  ∧  𝑛  ∈  { 0 } )  →  ( 𝐺 ‘ 𝑛 )  ∈  𝐷 ) | 
						
							| 62 | 61 | ex | ⊢ ( 𝐺 : { 0 } ⟶ 𝐷  →  ( 𝑛  ∈  { 0 }  →  ( 𝐺 ‘ 𝑛 )  ∈  𝐷 ) ) | 
						
							| 63 | 24 62 | syl | ⊢ ( 𝐺  ∈  ( 𝐷  ↑m  { 0 } )  →  ( 𝑛  ∈  { 0 }  →  ( 𝐺 ‘ 𝑛 )  ∈  𝐷 ) ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝑛  ∈  { 0 }  →  ( 𝐺 ‘ 𝑛 )  ∈  𝐷 ) ) | 
						
							| 65 | 64 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  →  ( 𝐺 ‘ 𝑛 )  ∈  𝐷 ) | 
						
							| 66 | 11 50 60 65 | fvmptd2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 67 | 66 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 68 | 67 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  →  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) | 
						
							| 69 | 68 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  { 0 } )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) | 
						
							| 70 | 41 69 | mpteq12dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ( 0 ... 0 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 0 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 72 |  | ovexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 0  +  1 )  ∈  V ) | 
						
							| 73 | 3 36 | mndidcl | ⊢ ( 𝐶  ∈  Mnd  →  ( 0g ‘ 𝐶 )  ∈  𝐵 ) | 
						
							| 74 | 15 73 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝐶 )  ∈  𝐵 ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 0g ‘ 𝐶 )  ∈  𝐵 ) | 
						
							| 76 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 77 | 76 | eqeq2i | ⊢ ( 𝑛  =  ( 0  +  1 )  ↔  𝑛  =  1 ) | 
						
							| 78 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 79 | 78 | neii | ⊢ ¬  1  =  0 | 
						
							| 80 |  | eqeq1 | ⊢ ( 𝑛  =  1  →  ( 𝑛  =  0  ↔  1  =  0 ) ) | 
						
							| 81 | 79 80 | mtbiri | ⊢ ( 𝑛  =  1  →  ¬  𝑛  =  0 ) | 
						
							| 82 | 77 81 | sylbi | ⊢ ( 𝑛  =  ( 0  +  1 )  →  ¬  𝑛  =  0 ) | 
						
							| 83 | 82 | ad2antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  ∧  𝑙  =  𝑛 )  →  ¬  𝑛  =  0 ) | 
						
							| 84 |  | eqeq1 | ⊢ ( 𝑙  =  𝑛  →  ( 𝑙  =  0  ↔  𝑛  =  0 ) ) | 
						
							| 85 | 84 | notbid | ⊢ ( 𝑙  =  𝑛  →  ( ¬  𝑙  =  0  ↔  ¬  𝑛  =  0 ) ) | 
						
							| 86 | 85 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  ∧  𝑙  =  𝑛 )  →  ( ¬  𝑙  =  0  ↔  ¬  𝑛  =  0 ) ) | 
						
							| 87 | 83 86 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  ∧  𝑙  =  𝑛 )  →  ¬  𝑙  =  0 ) | 
						
							| 88 | 87 | iffalsed | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  ∧  𝑙  =  𝑛 )  →  if ( 𝑙  =  0 ,  ( 𝐺 ‘ 0 ) ,   0  )  =   0  ) | 
						
							| 89 | 88 10 | eqtrdi | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  ∧  𝑙  =  𝑛 )  →  if ( 𝑙  =  0 ,  ( 𝐺 ‘ 0 ) ,   0  )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 90 | 51 | a1i | ⊢ ( 𝑛  =  1  →  1  ∈  ℕ0 ) | 
						
							| 91 | 90 53 | eleqtrdi | ⊢ ( 𝑛  =  1  →  1  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 92 |  | eluzfz2 | ⊢ ( 1  ∈  ( ℤ≥ ‘ 0 )  →  1  ∈  ( 0 ... 1 ) ) | 
						
							| 93 | 91 92 | syl | ⊢ ( 𝑛  =  1  →  1  ∈  ( 0 ... 1 ) ) | 
						
							| 94 |  | eleq1 | ⊢ ( 𝑛  =  1  →  ( 𝑛  ∈  ( 0 ... 1 )  ↔  1  ∈  ( 0 ... 1 ) ) ) | 
						
							| 95 | 93 94 | mpbird | ⊢ ( 𝑛  =  1  →  𝑛  ∈  ( 0 ... 1 ) ) | 
						
							| 96 | 77 95 | sylbi | ⊢ ( 𝑛  =  ( 0  +  1 )  →  𝑛  ∈  ( 0 ... 1 ) ) | 
						
							| 97 | 96 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  𝑛  ∈  ( 0 ... 1 ) ) | 
						
							| 98 |  | fvexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  ( 0g ‘ 𝐴 )  ∈  V ) | 
						
							| 99 | 11 89 97 98 | fvmptd2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  ( 𝐻 ‘ 𝑛 )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 100 | 99 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) ) | 
						
							| 101 | 8 | fveq2i | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 102 | 2 | fveq2i | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) | 
						
							| 103 | 7 1 101 102 | 0mat2pmat | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  ( 𝑇 ‘ ( 0g ‘ 𝐴 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 104 | 103 | ancoms | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑇 ‘ ( 0g ‘ 𝐴 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 105 | 104 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  ( 𝑇 ‘ ( 0g ‘ 𝐴 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 106 | 100 105 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 107 | 106 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 108 | 1 2 | pmatlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  LMod ) | 
						
							| 109 | 108 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  𝐶  ∈  LMod ) | 
						
							| 110 |  | simpllr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  𝑅  ∈  Ring ) | 
						
							| 111 |  | eleq1 | ⊢ ( 𝑛  =  1  →  ( 𝑛  ∈  ℕ0  ↔  1  ∈  ℕ0 ) ) | 
						
							| 112 | 90 111 | mpbird | ⊢ ( 𝑛  =  1  →  𝑛  ∈  ℕ0 ) | 
						
							| 113 | 77 112 | sylbi | ⊢ ( 𝑛  =  ( 0  +  1 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 114 | 113 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 115 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 116 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 117 | 1 6 115 5 116 | ply1moncl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 118 | 110 114 117 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 119 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 120 | 2 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  →  𝑃  =  ( Scalar ‘ 𝐶 ) ) | 
						
							| 121 | 119 120 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑃  =  ( Scalar ‘ 𝐶 ) ) | 
						
							| 122 | 121 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Scalar ‘ 𝐶 )  =  𝑃 ) | 
						
							| 123 | 122 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 124 | 123 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) )  ↔  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 125 | 124 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  ( ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) )  ↔  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 126 | 118 125 | mpbird | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 127 |  | eqid | ⊢ ( Scalar ‘ 𝐶 )  =  ( Scalar ‘ 𝐶 ) | 
						
							| 128 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 129 | 127 4 128 36 | lmodvs0 | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ 𝐶 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 130 | 109 126 129 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ 𝐶 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 131 | 107 130 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  =  ( 0  +  1 ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 132 | 3 16 72 75 131 | gsumsnd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  { ( 0  +  1 ) }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 133 | 132 | eqcomd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 0g ‘ 𝐶 )  =  ( 𝐶  Σg  ( 𝑛  ∈  { ( 0  +  1 ) }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 134 | 71 133 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 0g ‘ 𝐶 ) )  =  ( ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 0 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶  Σg  ( 𝑛  ∈  { ( 0  +  1 ) }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 135 | 38 134 | eqtr3d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) )  =  ( ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 0 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶  Σg  ( 𝑛  ∈  { ( 0  +  1 ) }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) )  =  ( ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 0 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶  Σg  ( 𝑛  ∈  { ( 0  +  1 ) }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 137 | 12 136 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  𝑀  =  ( ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 0 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶  Σg  ( 𝑛  ∈  { ( 0  +  1 ) }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 138 | 137 | 3impa | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  𝑀  =  ( ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 0 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶  Σg  ( 𝑛  ∈  { ( 0  +  1 ) }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 139 | 28 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  0  ∈  ℕ0 ) | 
						
							| 140 |  | simplll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  ( 0 ... ( 0  +  1 ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 141 |  | simpllr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  ( 0 ... ( 0  +  1 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 142 |  | id | ⊢ ( 𝐺 : { 0 } ⟶ 𝐷  →  𝐺 : { 0 } ⟶ 𝐷 ) | 
						
							| 143 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 144 | 143 | snid | ⊢ 0  ∈  { 0 } | 
						
							| 145 | 144 | a1i | ⊢ ( 𝐺 : { 0 } ⟶ 𝐷  →  0  ∈  { 0 } ) | 
						
							| 146 | 142 145 | ffvelcdmd | ⊢ ( 𝐺 : { 0 } ⟶ 𝐷  →  ( 𝐺 ‘ 0 )  ∈  𝐷 ) | 
						
							| 147 | 24 146 | syl | ⊢ ( 𝐺  ∈  ( 𝐷  ↑m  { 0 } )  →  ( 𝐺 ‘ 0 )  ∈  𝐷 ) | 
						
							| 148 | 147 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑙  ∈  ( 0 ... 1 ) )  →  ( 𝐺 ‘ 0 )  ∈  𝐷 ) | 
						
							| 149 | 8 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 150 | 9 10 | ring0cl | ⊢ ( 𝐴  ∈  Ring  →   0   ∈  𝐷 ) | 
						
							| 151 | 149 150 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   0   ∈  𝐷 ) | 
						
							| 152 | 151 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑙  ∈  ( 0 ... 1 ) )  →   0   ∈  𝐷 ) | 
						
							| 153 | 148 152 | ifcld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑙  ∈  ( 0 ... 1 ) )  →  if ( 𝑙  =  0 ,  ( 𝐺 ‘ 0 ) ,   0  )  ∈  𝐷 ) | 
						
							| 154 | 153 11 | fmptd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  𝐻 : ( 0 ... 1 ) ⟶ 𝐷 ) | 
						
							| 155 | 76 | oveq2i | ⊢ ( 0 ... ( 0  +  1 ) )  =  ( 0 ... 1 ) | 
						
							| 156 | 155 | feq2i | ⊢ ( 𝐻 : ( 0 ... ( 0  +  1 ) ) ⟶ 𝐷  ↔  𝐻 : ( 0 ... 1 ) ⟶ 𝐷 ) | 
						
							| 157 | 154 156 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  𝐻 : ( 0 ... ( 0  +  1 ) ) ⟶ 𝐷 ) | 
						
							| 158 | 157 | ffvelcdmda | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  ( 0 ... ( 0  +  1 ) ) )  →  ( 𝐻 ‘ 𝑛 )  ∈  𝐷 ) | 
						
							| 159 |  | elfznn0 | ⊢ ( 𝑛  ∈  ( 0 ... ( 0  +  1 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 160 | 159 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  ( 0 ... ( 0  +  1 ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 161 | 8 9 7 1 2 3 4 5 6 | mat2pmatscmxcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( ( 𝐻 ‘ 𝑛 )  ∈  𝐷  ∧  𝑛  ∈  ℕ0 ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 162 | 140 141 158 160 161 | syl22anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑛  ∈  ( 0 ... ( 0  +  1 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 163 | 3 35 19 139 162 | gsummptfzsplit | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... ( 0  +  1 ) )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) )  =  ( ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 0 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶  Σg  ( 𝑛  ∈  { ( 0  +  1 ) }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 164 | 163 | 3adant3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... ( 0  +  1 ) )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) )  =  ( ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 0 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶  Σg  ( 𝑛  ∈  { ( 0  +  1 ) }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 165 | 138 164 | eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... ( 0  +  1 ) )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 166 | 155 | mpteq1i | ⊢ ( 𝑛  ∈  ( 0 ... ( 0  +  1 ) )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) | 
						
							| 167 | 166 | oveq2i | ⊢ ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... ( 0  +  1 ) )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) | 
						
							| 168 | 165 167 | eqtrdi | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝐺  ∈  ( 𝐷  ↑m  { 0 } )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) |