| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idmatidpmat.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 2 |
|
idmatidpmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
0mat2pmat.0 |
⊢ 0 = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) |
| 4 |
|
0mat2pmat.z |
⊢ 𝑍 = ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) |
| 5 |
|
eqid |
⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( 𝑁 Mat 𝑃 ) = ( 𝑁 Mat 𝑃 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) = ( Base ‘ ( 𝑁 Mat 𝑃 ) ) |
| 9 |
1 5 6 2 7 8
|
mat2pmatghm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( ( 𝑁 Mat 𝑅 ) GrpHom ( 𝑁 Mat 𝑃 ) ) ) |
| 10 |
9
|
ancoms |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → 𝑇 ∈ ( ( 𝑁 Mat 𝑅 ) GrpHom ( 𝑁 Mat 𝑃 ) ) ) |
| 11 |
3 4
|
ghmid |
⊢ ( 𝑇 ∈ ( ( 𝑁 Mat 𝑅 ) GrpHom ( 𝑁 Mat 𝑃 ) ) → ( 𝑇 ‘ 0 ) = 𝑍 ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → ( 𝑇 ‘ 0 ) = 𝑍 ) |