Metamath Proof Explorer


Theorem 0mat2pmat

Description: The transformed zero matrix is the zero polynomial matrix. (Contributed by AV, 5-Aug-2019) (Proof shortened by AV, 19-Nov-2019)

Ref Expression
Hypotheses idmatidpmat.t
|- T = ( N matToPolyMat R )
idmatidpmat.p
|- P = ( Poly1 ` R )
0mat2pmat.0
|- .0. = ( 0g ` ( N Mat R ) )
0mat2pmat.z
|- Z = ( 0g ` ( N Mat P ) )
Assertion 0mat2pmat
|- ( ( R e. Ring /\ N e. Fin ) -> ( T ` .0. ) = Z )

Proof

Step Hyp Ref Expression
1 idmatidpmat.t
 |-  T = ( N matToPolyMat R )
2 idmatidpmat.p
 |-  P = ( Poly1 ` R )
3 0mat2pmat.0
 |-  .0. = ( 0g ` ( N Mat R ) )
4 0mat2pmat.z
 |-  Z = ( 0g ` ( N Mat P ) )
5 eqid
 |-  ( N Mat R ) = ( N Mat R )
6 eqid
 |-  ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) )
7 eqid
 |-  ( N Mat P ) = ( N Mat P )
8 eqid
 |-  ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) )
9 1 5 6 2 7 8 mat2pmatghm
 |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( ( N Mat R ) GrpHom ( N Mat P ) ) )
10 9 ancoms
 |-  ( ( R e. Ring /\ N e. Fin ) -> T e. ( ( N Mat R ) GrpHom ( N Mat P ) ) )
11 3 4 ghmid
 |-  ( T e. ( ( N Mat R ) GrpHom ( N Mat P ) ) -> ( T ` .0. ) = Z )
12 10 11 syl
 |-  ( ( R e. Ring /\ N e. Fin ) -> ( T ` .0. ) = Z )