Step |
Hyp |
Ref |
Expression |
1 |
|
idmatidpmat.t |
|- T = ( N matToPolyMat R ) |
2 |
|
idmatidpmat.p |
|- P = ( Poly1 ` R ) |
3 |
|
0mat2pmat.0 |
|- .0. = ( 0g ` ( N Mat R ) ) |
4 |
|
0mat2pmat.z |
|- Z = ( 0g ` ( N Mat P ) ) |
5 |
|
eqid |
|- ( N Mat R ) = ( N Mat R ) |
6 |
|
eqid |
|- ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) |
7 |
|
eqid |
|- ( N Mat P ) = ( N Mat P ) |
8 |
|
eqid |
|- ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) ) |
9 |
1 5 6 2 7 8
|
mat2pmatghm |
|- ( ( N e. Fin /\ R e. Ring ) -> T e. ( ( N Mat R ) GrpHom ( N Mat P ) ) ) |
10 |
9
|
ancoms |
|- ( ( R e. Ring /\ N e. Fin ) -> T e. ( ( N Mat R ) GrpHom ( N Mat P ) ) ) |
11 |
3 4
|
ghmid |
|- ( T e. ( ( N Mat R ) GrpHom ( N Mat P ) ) -> ( T ` .0. ) = Z ) |
12 |
10 11
|
syl |
|- ( ( R e. Ring /\ N e. Fin ) -> ( T ` .0. ) = Z ) |