| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idmatidpmat.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 2 |  | idmatidpmat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | idmatidpmat.1 |  |-  .1. = ( 1r ` ( N Mat R ) ) | 
						
							| 4 |  | idmatidpmat.i |  |-  I = ( 1r ` ( N Mat P ) ) | 
						
							| 5 |  | eqid |  |-  ( N Mat R ) = ( N Mat R ) | 
						
							| 6 |  | eqid |  |-  ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) | 
						
							| 7 |  | eqid |  |-  ( N Mat P ) = ( N Mat P ) | 
						
							| 8 |  | eqid |  |-  ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) ) | 
						
							| 9 | 1 5 6 2 7 8 | mat2pmat1 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( T ` ( 1r ` ( N Mat R ) ) ) = ( 1r ` ( N Mat P ) ) ) | 
						
							| 10 | 3 | fveq2i |  |-  ( T ` .1. ) = ( T ` ( 1r ` ( N Mat R ) ) ) | 
						
							| 11 | 9 10 4 | 3eqtr4g |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( T ` .1. ) = I ) | 
						
							| 12 | 11 | ancoms |  |-  ( ( R e. Ring /\ N e. Fin ) -> ( T ` .1. ) = I ) |