Metamath Proof Explorer


Theorem d0mat2pmat

Description: The transformed empty set as matrix of dimenson 0 is the empty set (i.e., the polynomial matrix of dimension 0). (Contributed by AV, 4-Aug-2019)

Ref Expression
Assertion d0mat2pmat
|- ( R e. V -> ( ( (/) matToPolyMat R ) ` (/) ) = (/) )

Proof

Step Hyp Ref Expression
1 0fin
 |-  (/) e. Fin
2 id
 |-  ( R e. V -> R e. V )
3 0ex
 |-  (/) e. _V
4 3 snid
 |-  (/) e. { (/) }
5 mat0dimbas0
 |-  ( R e. V -> ( Base ` ( (/) Mat R ) ) = { (/) } )
6 4 5 eleqtrrid
 |-  ( R e. V -> (/) e. ( Base ` ( (/) Mat R ) ) )
7 eqid
 |-  ( (/) matToPolyMat R ) = ( (/) matToPolyMat R )
8 eqid
 |-  ( (/) Mat R ) = ( (/) Mat R )
9 eqid
 |-  ( Base ` ( (/) Mat R ) ) = ( Base ` ( (/) Mat R ) )
10 eqid
 |-  ( Poly1 ` R ) = ( Poly1 ` R )
11 eqid
 |-  ( algSc ` ( Poly1 ` R ) ) = ( algSc ` ( Poly1 ` R ) )
12 7 8 9 10 11 mat2pmatval
 |-  ( ( (/) e. Fin /\ R e. V /\ (/) e. ( Base ` ( (/) Mat R ) ) ) -> ( ( (/) matToPolyMat R ) ` (/) ) = ( x e. (/) , y e. (/) |-> ( ( algSc ` ( Poly1 ` R ) ) ` ( x (/) y ) ) ) )
13 1 2 6 12 mp3an2i
 |-  ( R e. V -> ( ( (/) matToPolyMat R ) ` (/) ) = ( x e. (/) , y e. (/) |-> ( ( algSc ` ( Poly1 ` R ) ) ` ( x (/) y ) ) ) )
14 mpo0
 |-  ( x e. (/) , y e. (/) |-> ( ( algSc ` ( Poly1 ` R ) ) ` ( x (/) y ) ) ) = (/)
15 13 14 eqtrdi
 |-  ( R e. V -> ( ( (/) matToPolyMat R ) ` (/) ) = (/) )