| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0fi |  |-  (/) e. Fin | 
						
							| 2 |  | id |  |-  ( R e. V -> R e. V ) | 
						
							| 3 |  | 0ex |  |-  (/) e. _V | 
						
							| 4 | 3 | snid |  |-  (/) e. { (/) } | 
						
							| 5 |  | mat0dimbas0 |  |-  ( R e. V -> ( Base ` ( (/) Mat R ) ) = { (/) } ) | 
						
							| 6 | 4 5 | eleqtrrid |  |-  ( R e. V -> (/) e. ( Base ` ( (/) Mat R ) ) ) | 
						
							| 7 |  | eqid |  |-  ( (/) matToPolyMat R ) = ( (/) matToPolyMat R ) | 
						
							| 8 |  | eqid |  |-  ( (/) Mat R ) = ( (/) Mat R ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( (/) Mat R ) ) = ( Base ` ( (/) Mat R ) ) | 
						
							| 10 |  | eqid |  |-  ( Poly1 ` R ) = ( Poly1 ` R ) | 
						
							| 11 |  | eqid |  |-  ( algSc ` ( Poly1 ` R ) ) = ( algSc ` ( Poly1 ` R ) ) | 
						
							| 12 | 7 8 9 10 11 | mat2pmatval |  |-  ( ( (/) e. Fin /\ R e. V /\ (/) e. ( Base ` ( (/) Mat R ) ) ) -> ( ( (/) matToPolyMat R ) ` (/) ) = ( x e. (/) , y e. (/) |-> ( ( algSc ` ( Poly1 ` R ) ) ` ( x (/) y ) ) ) ) | 
						
							| 13 | 1 2 6 12 | mp3an2i |  |-  ( R e. V -> ( ( (/) matToPolyMat R ) ` (/) ) = ( x e. (/) , y e. (/) |-> ( ( algSc ` ( Poly1 ` R ) ) ` ( x (/) y ) ) ) ) | 
						
							| 14 |  | mpo0 |  |-  ( x e. (/) , y e. (/) |-> ( ( algSc ` ( Poly1 ` R ) ) ` ( x (/) y ) ) ) = (/) | 
						
							| 15 | 13 14 | eqtrdi |  |-  ( R e. V -> ( ( (/) matToPolyMat R ) ` (/) ) = (/) ) |