| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 2 |  | id | ⊢ ( 𝑅  ∈  𝑉  →  𝑅  ∈  𝑉 ) | 
						
							| 3 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 4 | 3 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 5 |  | mat0dimbas0 | ⊢ ( 𝑅  ∈  𝑉  →  ( Base ‘ ( ∅  Mat  𝑅 ) )  =  { ∅ } ) | 
						
							| 6 | 4 5 | eleqtrrid | ⊢ ( 𝑅  ∈  𝑉  →  ∅  ∈  ( Base ‘ ( ∅  Mat  𝑅 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( ∅  matToPolyMat  𝑅 )  =  ( ∅  matToPolyMat  𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( ∅  Mat  𝑅 )  =  ( ∅  Mat  𝑅 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( ∅  Mat  𝑅 ) )  =  ( Base ‘ ( ∅  Mat  𝑅 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Poly1 ‘ 𝑅 )  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) )  =  ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) | 
						
							| 12 | 7 8 9 10 11 | mat2pmatval | ⊢ ( ( ∅  ∈  Fin  ∧  𝑅  ∈  𝑉  ∧  ∅  ∈  ( Base ‘ ( ∅  Mat  𝑅 ) ) )  →  ( ( ∅  matToPolyMat  𝑅 ) ‘ ∅ )  =  ( 𝑥  ∈  ∅ ,  𝑦  ∈  ∅  ↦  ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑥 ∅ 𝑦 ) ) ) ) | 
						
							| 13 | 1 2 6 12 | mp3an2i | ⊢ ( 𝑅  ∈  𝑉  →  ( ( ∅  matToPolyMat  𝑅 ) ‘ ∅ )  =  ( 𝑥  ∈  ∅ ,  𝑦  ∈  ∅  ↦  ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑥 ∅ 𝑦 ) ) ) ) | 
						
							| 14 |  | mpo0 | ⊢ ( 𝑥  ∈  ∅ ,  𝑦  ∈  ∅  ↦  ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 𝑥 ∅ 𝑦 ) ) )  =  ∅ | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( 𝑅  ∈  𝑉  →  ( ( ∅  matToPolyMat  𝑅 ) ‘ ∅ )  =  ∅ ) |