| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xp |
⊢ ( ∅ × ∅ ) = ∅ |
| 2 |
1
|
a1i |
⊢ ( 𝑅 ∈ 𝑉 → ( ∅ × ∅ ) = ∅ ) |
| 3 |
2
|
oveq2d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ( ∅ × ∅ ) ) = ( ( Base ‘ 𝑅 ) ↑m ∅ ) ) |
| 4 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
| 5 |
|
map0e |
⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
| 6 |
4 5
|
mp1i |
⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
| 7 |
3 6
|
eqtrd |
⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ( ∅ × ∅ ) ) = 1o ) |
| 8 |
|
0fi |
⊢ ∅ ∈ Fin |
| 9 |
|
eqid |
⊢ ( ∅ Mat 𝑅 ) = ( ∅ Mat 𝑅 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 11 |
9 10
|
matbas2 |
⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m ( ∅ × ∅ ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
| 12 |
8 11
|
mpan |
⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ( ∅ × ∅ ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
| 13 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 14 |
13
|
a1i |
⊢ ( 𝑅 ∈ 𝑉 → 1o = { ∅ } ) |
| 15 |
7 12 14
|
3eqtr3d |
⊢ ( 𝑅 ∈ 𝑉 → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |