| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat0dim.a |
⊢ 𝐴 = ( ∅ Mat 𝑅 ) |
| 2 |
|
0fi |
⊢ ∅ ∈ Fin |
| 3 |
1
|
matring |
⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 4 |
2 3
|
mpan |
⊢ ( 𝑅 ∈ Ring → 𝐴 ∈ Ring ) |
| 5 |
|
ringgrp |
⊢ ( 𝐴 ∈ Ring → 𝐴 ∈ Grp ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
| 8 |
6 7
|
grpidcl |
⊢ ( 𝐴 ∈ Grp → ( 0g ‘ 𝐴 ) ∈ ( Base ‘ 𝐴 ) ) |
| 9 |
4 5 8
|
3syl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝐴 ) ∈ ( Base ‘ 𝐴 ) ) |
| 10 |
1
|
fveq2i |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) |
| 11 |
|
mat0dimbas0 |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |
| 12 |
10 11
|
eqtrid |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝐴 ) = { ∅ } ) |
| 13 |
12
|
eleq2d |
⊢ ( 𝑅 ∈ Ring → ( ( 0g ‘ 𝐴 ) ∈ ( Base ‘ 𝐴 ) ↔ ( 0g ‘ 𝐴 ) ∈ { ∅ } ) ) |
| 14 |
|
elsni |
⊢ ( ( 0g ‘ 𝐴 ) ∈ { ∅ } → ( 0g ‘ 𝐴 ) = ∅ ) |
| 15 |
13 14
|
biimtrdi |
⊢ ( 𝑅 ∈ Ring → ( ( 0g ‘ 𝐴 ) ∈ ( Base ‘ 𝐴 ) → ( 0g ‘ 𝐴 ) = ∅ ) ) |
| 16 |
9 15
|
mpd |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝐴 ) = ∅ ) |