| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat0dim.a |
|- A = ( (/) Mat R ) |
| 2 |
|
0fi |
|- (/) e. Fin |
| 3 |
1
|
matring |
|- ( ( (/) e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 4 |
2 3
|
mpan |
|- ( R e. Ring -> A e. Ring ) |
| 5 |
|
ringgrp |
|- ( A e. Ring -> A e. Grp ) |
| 6 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 7 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
| 8 |
6 7
|
grpidcl |
|- ( A e. Grp -> ( 0g ` A ) e. ( Base ` A ) ) |
| 9 |
4 5 8
|
3syl |
|- ( R e. Ring -> ( 0g ` A ) e. ( Base ` A ) ) |
| 10 |
1
|
fveq2i |
|- ( Base ` A ) = ( Base ` ( (/) Mat R ) ) |
| 11 |
|
mat0dimbas0 |
|- ( R e. Ring -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
| 12 |
10 11
|
eqtrid |
|- ( R e. Ring -> ( Base ` A ) = { (/) } ) |
| 13 |
12
|
eleq2d |
|- ( R e. Ring -> ( ( 0g ` A ) e. ( Base ` A ) <-> ( 0g ` A ) e. { (/) } ) ) |
| 14 |
|
elsni |
|- ( ( 0g ` A ) e. { (/) } -> ( 0g ` A ) = (/) ) |
| 15 |
13 14
|
biimtrdi |
|- ( R e. Ring -> ( ( 0g ` A ) e. ( Base ` A ) -> ( 0g ` A ) = (/) ) ) |
| 16 |
9 15
|
mpd |
|- ( R e. Ring -> ( 0g ` A ) = (/) ) |