Metamath Proof Explorer


Theorem mpo0

Description: A mapping operation with empty domain. In this version of mpo0v , the class of the second operator may depend on the first operator. (Contributed by Stefan O'Rear, 29-Jan-2015) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion mpo0 ( 𝑥 ∈ ∅ , 𝑦𝐵𝐶 ) = ∅

Proof

Step Hyp Ref Expression
1 df-mpo ( 𝑥 ∈ ∅ , 𝑦𝐵𝐶 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ∅ ∧ 𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
2 df-oprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ∅ ∧ 𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) } = { 𝑤 ∣ ∃ 𝑥𝑦𝑧 ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) ) }
3 noel ¬ 𝑥 ∈ ∅
4 simprll ( ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) ) → 𝑥 ∈ ∅ )
5 3 4 mto ¬ ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) )
6 5 nex ¬ ∃ 𝑧 ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) )
7 6 nex ¬ ∃ 𝑦𝑧 ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) )
8 7 nex ¬ ∃ 𝑥𝑦𝑧 ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) )
9 8 abf { 𝑤 ∣ ∃ 𝑥𝑦𝑧 ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) ) } = ∅
10 1 2 9 3eqtri ( 𝑥 ∈ ∅ , 𝑦𝐵𝐶 ) = ∅