Metamath Proof Explorer


Theorem rexun

Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Assertion rexun xABφxAφxBφ

Proof

Step Hyp Ref Expression
1 df-rex xABφxxABφ
2 19.43 xxAφxBφxxAφxxBφ
3 elun xABxAxB
4 3 anbi1i xABφxAxBφ
5 andir xAxBφxAφxBφ
6 4 5 bitri xABφxAφxBφ
7 6 exbii xxABφxxAφxBφ
8 df-rex xAφxxAφ
9 df-rex xBφxxBφ
10 8 9 orbi12i xAφxBφxxAφxxBφ
11 2 7 10 3bitr4i xxABφxAφxBφ
12 1 11 bitri xABφxAφxBφ