| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw.p |
|
| 2 |
|
pmatcollpw.c |
|
| 3 |
|
pmatcollpw.b |
|
| 4 |
|
pmatcollpw.m |
|
| 5 |
|
pmatcollpw.e |
|
| 6 |
|
pmatcollpw.x |
|
| 7 |
|
pmatcollpw.t |
|
| 8 |
|
pmatcollpw3.a |
|
| 9 |
|
pmatcollpw3.d |
|
| 10 |
|
dmeq |
|
| 11 |
10
|
dmeqd |
|
| 12 |
|
oveq |
|
| 13 |
12
|
fveq2d |
|
| 14 |
13
|
fveq1d |
|
| 15 |
11 11 14
|
mpoeq123dv |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
mpoeq3dv |
|
| 18 |
15 17
|
cbvmpov |
|
| 19 |
|
dmexg |
|
| 20 |
19
|
dmexd |
|
| 21 |
20 20
|
jca |
|
| 22 |
21
|
ad2antrl |
|
| 23 |
|
mpoexga |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
ralrimivva |
|
| 26 |
|
simprr |
|
| 27 |
|
nn0ex |
|
| 28 |
27
|
ssex |
|
| 29 |
28
|
ad2antrl |
|
| 30 |
|
simp3 |
|
| 31 |
30
|
adantr |
|
| 32 |
18 25 26 29 31
|
mpocurryvald |
|
| 33 |
|
fveq2 |
|
| 34 |
33
|
mpoeq3dv |
|
| 35 |
34
|
csbeq2dv |
|
| 36 |
|
eqcom |
|
| 37 |
|
eqcom |
|
| 38 |
15 36 37
|
3imtr3i |
|
| 39 |
38
|
cbvcsbv |
|
| 40 |
35 39
|
eqtrdi |
|
| 41 |
40
|
cbvmptv |
|
| 42 |
32 41
|
eqtrdi |
|
| 43 |
|
dmeq |
|
| 44 |
43
|
dmeqd |
|
| 45 |
|
oveq |
|
| 46 |
45
|
fveq2d |
|
| 47 |
46
|
fveq1d |
|
| 48 |
44 44 47
|
mpoeq123dv |
|
| 49 |
48
|
adantl |
|
| 50 |
30 49
|
csbied |
|
| 51 |
|
eqid |
|
| 52 |
2 51 3
|
matbas2i |
|
| 53 |
|
elmapi |
|
| 54 |
|
fdm |
|
| 55 |
54
|
dmeqd |
|
| 56 |
|
dmxpid |
|
| 57 |
55 56
|
eqtr2di |
|
| 58 |
52 53 57
|
3syl |
|
| 59 |
58
|
3ad2ant3 |
|
| 60 |
59
|
adantr |
|
| 61 |
|
simpr |
|
| 62 |
61
|
oveqd |
|
| 63 |
62
|
fveq2d |
|
| 64 |
63
|
fveq1d |
|
| 65 |
60 60 64
|
mpoeq123dv |
|
| 66 |
30 65
|
csbied |
|
| 67 |
50 66
|
eqtr4d |
|
| 68 |
67
|
adantr |
|
| 69 |
68
|
mpteq2dv |
|
| 70 |
42 69
|
eqtrd |
|
| 71 |
|
oveq |
|
| 72 |
71
|
adantl |
|
| 73 |
72
|
fveq2d |
|
| 74 |
73
|
fveq1d |
|
| 75 |
74
|
mpoeq3dv |
|
| 76 |
30 75
|
csbied |
|
| 77 |
76
|
ad2antrr |
|
| 78 |
|
eqid |
|
| 79 |
|
simpll1 |
|
| 80 |
|
simpll2 |
|
| 81 |
|
simp2 |
|
| 82 |
|
simp3 |
|
| 83 |
31
|
adantr |
|
| 84 |
83
|
3ad2ant1 |
|
| 85 |
2 51 3 81 82 84
|
matecld |
|
| 86 |
|
ssel |
|
| 87 |
86
|
ad2antrl |
|
| 88 |
87
|
imp |
|
| 89 |
88
|
3ad2ant1 |
|
| 90 |
|
eqid |
|
| 91 |
90 51 1 78
|
coe1fvalcl |
|
| 92 |
85 89 91
|
syl2anc |
|
| 93 |
8 78 9 79 80 92
|
matbas2d |
|
| 94 |
77 93
|
eqeltrd |
|
| 95 |
94
|
fmpttd |
|
| 96 |
9
|
fvexi |
|
| 97 |
96
|
a1i |
|
| 98 |
28
|
adantr |
|
| 99 |
|
elmapg |
|
| 100 |
97 98 99
|
syl2an |
|
| 101 |
95 100
|
mpbird |
|
| 102 |
70 101
|
eqeltrd |
|
| 103 |
|
fveq1 |
|
| 104 |
103
|
adantl |
|
| 105 |
104
|
adantr |
|
| 106 |
|
eqid |
|
| 107 |
|
dmexg |
|
| 108 |
107
|
dmexd |
|
| 109 |
108 108
|
jca |
|
| 110 |
109
|
ad2antrl |
|
| 111 |
|
mpoexga |
|
| 112 |
110 111
|
syl |
|
| 113 |
112
|
ralrimivva |
|
| 114 |
29
|
adantr |
|
| 115 |
31
|
adantr |
|
| 116 |
|
simpr |
|
| 117 |
106 113 114 115 116
|
fvmpocurryd |
|
| 118 |
|
df-decpmat |
|
| 119 |
118
|
reseq1i |
|
| 120 |
|
ssv |
|
| 121 |
120
|
a1i |
|
| 122 |
|
simpl |
|
| 123 |
121 122
|
anim12i |
|
| 124 |
123
|
adantr |
|
| 125 |
|
resmpo |
|
| 126 |
124 125
|
syl |
|
| 127 |
119 126
|
eqtr2id |
|
| 128 |
127
|
oveqd |
|
| 129 |
117 128
|
eqtrd |
|
| 130 |
129
|
adantlr |
|
| 131 |
105 130
|
eqtrd |
|
| 132 |
131
|
fveq2d |
|
| 133 |
30
|
ad2antrr |
|
| 134 |
|
ovres |
|
| 135 |
133 134
|
sylan |
|
| 136 |
135
|
fveq2d |
|
| 137 |
132 136
|
eqtrd |
|
| 138 |
137
|
oveq2d |
|
| 139 |
138
|
mpteq2dva |
|
| 140 |
139
|
oveq2d |
|
| 141 |
140
|
eqeq2d |
|
| 142 |
102 141
|
rspcedv |
|