Metamath Proof Explorer


Theorem gsummptnn0fz

Description: A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses gsummptnn0fz.b B = Base G
gsummptnn0fz.0 0 ˙ = 0 G
gsummptnn0fz.g φ G CMnd
gsummptnn0fz.f φ k 0 C B
gsummptnn0fz.s φ S 0
gsummptnn0fz.u φ k 0 S < k C = 0 ˙
Assertion gsummptnn0fz φ G k 0 C = G k = 0 S C

Proof

Step Hyp Ref Expression
1 gsummptnn0fz.b B = Base G
2 gsummptnn0fz.0 0 ˙ = 0 G
3 gsummptnn0fz.g φ G CMnd
4 gsummptnn0fz.f φ k 0 C B
5 gsummptnn0fz.s φ S 0
6 gsummptnn0fz.u φ k 0 S < k C = 0 ˙
7 nfv x S < k C = 0 ˙
8 nfv k S < x
9 nfcsb1v _ k x / k C
10 9 nfeq1 k x / k C = 0 ˙
11 8 10 nfim k S < x x / k C = 0 ˙
12 breq2 k = x S < k S < x
13 csbeq1a k = x C = x / k C
14 13 eqeq1d k = x C = 0 ˙ x / k C = 0 ˙
15 12 14 imbi12d k = x S < k C = 0 ˙ S < x x / k C = 0 ˙
16 7 11 15 cbvralw k 0 S < k C = 0 ˙ x 0 S < x x / k C = 0 ˙
17 6 16 sylib φ x 0 S < x x / k C = 0 ˙
18 simpr φ x 0 x 0
19 4 anim1ci φ x 0 x 0 k 0 C B
20 rspcsbela x 0 k 0 C B x / k C B
21 19 20 syl φ x 0 x / k C B
22 18 21 jca φ x 0 x 0 x / k C B
23 22 adantr φ x 0 x / k C = 0 ˙ x 0 x / k C B
24 eqid k 0 C = k 0 C
25 24 fvmpts x 0 x / k C B k 0 C x = x / k C
26 23 25 syl φ x 0 x / k C = 0 ˙ k 0 C x = x / k C
27 simpr φ x 0 x / k C = 0 ˙ x / k C = 0 ˙
28 26 27 eqtrd φ x 0 x / k C = 0 ˙ k 0 C x = 0 ˙
29 28 ex φ x 0 x / k C = 0 ˙ k 0 C x = 0 ˙
30 29 imim2d φ x 0 S < x x / k C = 0 ˙ S < x k 0 C x = 0 ˙
31 30 ralimdva φ x 0 S < x x / k C = 0 ˙ x 0 S < x k 0 C x = 0 ˙
32 17 31 mpd φ x 0 S < x k 0 C x = 0 ˙
33 24 fmpt k 0 C B k 0 C : 0 B
34 4 33 sylib φ k 0 C : 0 B
35 1 fvexi B V
36 nn0ex 0 V
37 35 36 pm3.2i B V 0 V
38 elmapg B V 0 V k 0 C B 0 k 0 C : 0 B
39 37 38 mp1i φ k 0 C B 0 k 0 C : 0 B
40 34 39 mpbird φ k 0 C B 0
41 fz0ssnn0 0 S 0
42 resmpt 0 S 0 k 0 C 0 S = k 0 S C
43 41 42 ax-mp k 0 C 0 S = k 0 S C
44 43 eqcomi k 0 S C = k 0 C 0 S
45 1 2 3 40 5 44 fsfnn0gsumfsffz φ x 0 S < x k 0 C x = 0 ˙ G k 0 C = G k = 0 S C
46 32 45 mpd φ G k 0 C = G k = 0 S C