Description: A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019) (Revised by AV, 3-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummptnn0fz.b | |
|
gsummptnn0fz.0 | |
||
gsummptnn0fz.g | |
||
gsummptnn0fz.f | |
||
gsummptnn0fz.s | |
||
gsummptnn0fz.u | |
||
Assertion | gsummptnn0fz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptnn0fz.b | |
|
2 | gsummptnn0fz.0 | |
|
3 | gsummptnn0fz.g | |
|
4 | gsummptnn0fz.f | |
|
5 | gsummptnn0fz.s | |
|
6 | gsummptnn0fz.u | |
|
7 | nfv | |
|
8 | nfv | |
|
9 | nfcsb1v | |
|
10 | 9 | nfeq1 | |
11 | 8 10 | nfim | |
12 | breq2 | |
|
13 | csbeq1a | |
|
14 | 13 | eqeq1d | |
15 | 12 14 | imbi12d | |
16 | 7 11 15 | cbvralw | |
17 | 6 16 | sylib | |
18 | simpr | |
|
19 | 4 | anim1ci | |
20 | rspcsbela | |
|
21 | 19 20 | syl | |
22 | 18 21 | jca | |
23 | 22 | adantr | |
24 | eqid | |
|
25 | 24 | fvmpts | |
26 | 23 25 | syl | |
27 | simpr | |
|
28 | 26 27 | eqtrd | |
29 | 28 | ex | |
30 | 29 | imim2d | |
31 | 30 | ralimdva | |
32 | 17 31 | mpd | |
33 | 24 | fmpt | |
34 | 4 33 | sylib | |
35 | 1 | fvexi | |
36 | nn0ex | |
|
37 | 35 36 | pm3.2i | |
38 | elmapg | |
|
39 | 37 38 | mp1i | |
40 | 34 39 | mpbird | |
41 | fz0ssnn0 | |
|
42 | resmpt | |
|
43 | 41 42 | ax-mp | |
44 | 43 | eqcomi | |
45 | 1 2 3 40 5 44 | fsfnn0gsumfsffz | |
46 | 32 45 | mpd | |