Metamath Proof Explorer


Theorem gsummptnn0fz

Description: A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses gsummptnn0fz.b B=BaseG
gsummptnn0fz.0 0˙=0G
gsummptnn0fz.g φGCMnd
gsummptnn0fz.f φk0CB
gsummptnn0fz.s φS0
gsummptnn0fz.u φk0S<kC=0˙
Assertion gsummptnn0fz φGk0C=Gk=0SC

Proof

Step Hyp Ref Expression
1 gsummptnn0fz.b B=BaseG
2 gsummptnn0fz.0 0˙=0G
3 gsummptnn0fz.g φGCMnd
4 gsummptnn0fz.f φk0CB
5 gsummptnn0fz.s φS0
6 gsummptnn0fz.u φk0S<kC=0˙
7 nfv xS<kC=0˙
8 nfv kS<x
9 nfcsb1v _kx/kC
10 9 nfeq1 kx/kC=0˙
11 8 10 nfim kS<xx/kC=0˙
12 breq2 k=xS<kS<x
13 csbeq1a k=xC=x/kC
14 13 eqeq1d k=xC=0˙x/kC=0˙
15 12 14 imbi12d k=xS<kC=0˙S<xx/kC=0˙
16 7 11 15 cbvralw k0S<kC=0˙x0S<xx/kC=0˙
17 6 16 sylib φx0S<xx/kC=0˙
18 simpr φx0x0
19 4 anim1ci φx0x0k0CB
20 rspcsbela x0k0CBx/kCB
21 19 20 syl φx0x/kCB
22 18 21 jca φx0x0x/kCB
23 22 adantr φx0x/kC=0˙x0x/kCB
24 eqid k0C=k0C
25 24 fvmpts x0x/kCBk0Cx=x/kC
26 23 25 syl φx0x/kC=0˙k0Cx=x/kC
27 simpr φx0x/kC=0˙x/kC=0˙
28 26 27 eqtrd φx0x/kC=0˙k0Cx=0˙
29 28 ex φx0x/kC=0˙k0Cx=0˙
30 29 imim2d φx0S<xx/kC=0˙S<xk0Cx=0˙
31 30 ralimdva φx0S<xx/kC=0˙x0S<xk0Cx=0˙
32 17 31 mpd φx0S<xk0Cx=0˙
33 24 fmpt k0CBk0C:0B
34 4 33 sylib φk0C:0B
35 1 fvexi BV
36 nn0ex 0V
37 35 36 pm3.2i BV0V
38 elmapg BV0Vk0CB0k0C:0B
39 37 38 mp1i φk0CB0k0C:0B
40 34 39 mpbird φk0CB0
41 fz0ssnn0 0S0
42 resmpt 0S0k0C0S=k0SC
43 41 42 ax-mp k0C0S=k0SC
44 43 eqcomi k0SC=k0C0S
45 1 2 3 40 5 44 fsfnn0gsumfsffz φx0S<xk0Cx=0˙Gk0C=Gk=0SC
46 32 45 mpd φGk0C=Gk=0SC