Metamath Proof Explorer


Theorem gsummptnn0fzfv

Description: A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019)

Ref Expression
Hypotheses gsummptnn0fzfv.b B = Base G
gsummptnn0fzfv.0 0 ˙ = 0 G
gsummptnn0fzfv.g φ G CMnd
gsummptnn0fzfv.f φ F B 0
gsummptnn0fzfv.s φ S 0
gsummptnn0fzfv.u φ x 0 S < x F x = 0 ˙
Assertion gsummptnn0fzfv φ G k 0 F k = G k = 0 S F k

Proof

Step Hyp Ref Expression
1 gsummptnn0fzfv.b B = Base G
2 gsummptnn0fzfv.0 0 ˙ = 0 G
3 gsummptnn0fzfv.g φ G CMnd
4 gsummptnn0fzfv.f φ F B 0
5 gsummptnn0fzfv.s φ S 0
6 gsummptnn0fzfv.u φ x 0 S < x F x = 0 ˙
7 elmapi F B 0 F : 0 B
8 ffvelrn F : 0 B k 0 F k B
9 8 ex F : 0 B k 0 F k B
10 4 7 9 3syl φ k 0 F k B
11 10 ralrimiv φ k 0 F k B
12 breq2 x = k S < x S < k
13 fveqeq2 x = k F x = 0 ˙ F k = 0 ˙
14 12 13 imbi12d x = k S < x F x = 0 ˙ S < k F k = 0 ˙
15 14 cbvralvw x 0 S < x F x = 0 ˙ k 0 S < k F k = 0 ˙
16 6 15 sylib φ k 0 S < k F k = 0 ˙
17 1 2 3 11 5 16 gsummptnn0fz φ G k 0 F k = G k = 0 S F k