Step |
Hyp |
Ref |
Expression |
1 |
|
telgsumfzs.b |
|
2 |
|
telgsumfzs.g |
|
3 |
|
telgsumfzs.m |
|
4 |
|
eqid |
|
5 |
2
|
adantr |
|
6 |
|
ablcmn |
|
7 |
5 6
|
syl |
|
8 |
7
|
adantl |
|
9 |
|
fzfid |
|
10 |
|
ablgrp |
|
11 |
2 10
|
syl |
|
12 |
11
|
ad2antrl |
|
13 |
12
|
adantr |
|
14 |
|
fzelp1 |
|
15 |
|
simpr |
|
16 |
15
|
adantl |
|
17 |
|
rspcsbela |
|
18 |
14 16 17
|
syl2anr |
|
19 |
|
fzp1elp1 |
|
20 |
|
rspcsbela |
|
21 |
19 16 20
|
syl2anr |
|
22 |
1 3
|
grpsubcl |
|
23 |
13 18 21 22
|
syl3anc |
|
24 |
|
fzp1disj |
|
25 |
24
|
a1i |
|
26 |
|
fzsuc |
|
27 |
26
|
adantr |
|
28 |
1 4 8 9 23 25 27
|
gsummptfidmsplit |
|
29 |
28
|
adantr |
|
30 |
|
simpr |
|
31 |
11
|
grpmndd |
|
32 |
31
|
ad2antrl |
|
33 |
|
ovexd |
|
34 |
|
peano2uz |
|
35 |
|
eluzfz2 |
|
36 |
34 35
|
syl |
|
37 |
|
fzelp1 |
|
38 |
36 37
|
syl |
|
39 |
|
rspcsbela |
|
40 |
38 15 39
|
syl2an |
|
41 |
|
peano2uz |
|
42 |
34 41
|
syl |
|
43 |
|
eluzfz2 |
|
44 |
42 43
|
syl |
|
45 |
|
rspcsbela |
|
46 |
44 15 45
|
syl2an |
|
47 |
1 3
|
grpsubcl |
|
48 |
12 40 46 47
|
syl3anc |
|
49 |
|
csbeq1 |
|
50 |
|
oveq1 |
|
51 |
50
|
csbeq1d |
|
52 |
49 51
|
oveq12d |
|
53 |
52
|
adantl |
|
54 |
1 32 33 48 53
|
gsumsnd |
|
55 |
54
|
adantr |
|
56 |
30 55
|
oveq12d |
|
57 |
|
eluzfz1 |
|
58 |
42 57
|
syl |
|
59 |
|
rspcsbela |
|
60 |
58 15 59
|
syl2an |
|
61 |
1 4 3
|
grpnpncan |
|
62 |
12 60 40 46 61
|
syl13anc |
|
63 |
62
|
adantr |
|
64 |
29 56 63
|
3eqtrd |
|
65 |
64
|
ex |
|