| Step |
Hyp |
Ref |
Expression |
| 1 |
|
telgsumfzs.b |
|
| 2 |
|
telgsumfzs.g |
|
| 3 |
|
telgsumfzs.m |
|
| 4 |
|
eqid |
|
| 5 |
2
|
adantr |
|
| 6 |
|
ablcmn |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
adantl |
|
| 9 |
|
fzfid |
|
| 10 |
|
ablgrp |
|
| 11 |
2 10
|
syl |
|
| 12 |
11
|
ad2antrl |
|
| 13 |
12
|
adantr |
|
| 14 |
|
fzelp1 |
|
| 15 |
|
simpr |
|
| 16 |
15
|
adantl |
|
| 17 |
|
rspcsbela |
|
| 18 |
14 16 17
|
syl2anr |
|
| 19 |
|
fzp1elp1 |
|
| 20 |
|
rspcsbela |
|
| 21 |
19 16 20
|
syl2anr |
|
| 22 |
1 3
|
grpsubcl |
|
| 23 |
13 18 21 22
|
syl3anc |
|
| 24 |
|
fzp1disj |
|
| 25 |
24
|
a1i |
|
| 26 |
|
fzsuc |
|
| 27 |
26
|
adantr |
|
| 28 |
1 4 8 9 23 25 27
|
gsummptfidmsplit |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
11
|
grpmndd |
|
| 32 |
31
|
ad2antrl |
|
| 33 |
|
ovexd |
|
| 34 |
|
peano2uz |
|
| 35 |
|
eluzfz2 |
|
| 36 |
34 35
|
syl |
|
| 37 |
|
fzelp1 |
|
| 38 |
36 37
|
syl |
|
| 39 |
|
rspcsbela |
|
| 40 |
38 15 39
|
syl2an |
|
| 41 |
|
peano2uz |
|
| 42 |
34 41
|
syl |
|
| 43 |
|
eluzfz2 |
|
| 44 |
42 43
|
syl |
|
| 45 |
|
rspcsbela |
|
| 46 |
44 15 45
|
syl2an |
|
| 47 |
1 3
|
grpsubcl |
|
| 48 |
12 40 46 47
|
syl3anc |
|
| 49 |
|
csbeq1 |
|
| 50 |
|
oveq1 |
|
| 51 |
50
|
csbeq1d |
|
| 52 |
49 51
|
oveq12d |
|
| 53 |
52
|
adantl |
|
| 54 |
1 32 33 48 53
|
gsumsnd |
|
| 55 |
54
|
adantr |
|
| 56 |
30 55
|
oveq12d |
|
| 57 |
|
eluzfz1 |
|
| 58 |
42 57
|
syl |
|
| 59 |
|
rspcsbela |
|
| 60 |
58 15 59
|
syl2an |
|
| 61 |
1 4 3
|
grpnpncan |
|
| 62 |
12 60 40 46 61
|
syl13anc |
|
| 63 |
62
|
adantr |
|
| 64 |
29 56 63
|
3eqtrd |
|
| 65 |
64
|
ex |
|