| Step |
Hyp |
Ref |
Expression |
| 1 |
|
telgsumfzs.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
telgsumfzs.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 3 |
|
telgsumfzs.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝐺 ∈ Abel ) |
| 6 |
|
ablcmn |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝐺 ∈ CMnd ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → 𝐺 ∈ CMnd ) |
| 9 |
|
fzfid |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( 𝑀 ... ( 𝑦 + 1 ) ) ∈ Fin ) |
| 10 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 12 |
11
|
ad2antrl |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ) → 𝐺 ∈ Grp ) |
| 14 |
|
fzelp1 |
⊢ ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) → 𝑖 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) |
| 17 |
|
rspcsbela |
⊢ ( ( 𝑖 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 18 |
14 16 17
|
syl2anr |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 19 |
|
fzp1elp1 |
⊢ ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) → ( 𝑖 + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 20 |
|
rspcsbela |
⊢ ( ( ( 𝑖 + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 21 |
19 16 20
|
syl2anr |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 22 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 23 |
13 18 21 22
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 24 |
|
fzp1disj |
⊢ ( ( 𝑀 ... 𝑦 ) ∩ { ( 𝑦 + 1 ) } ) = ∅ |
| 25 |
24
|
a1i |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( ( 𝑀 ... 𝑦 ) ∩ { ( 𝑦 + 1 ) } ) = ∅ ) |
| 26 |
|
fzsuc |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( 𝑦 + 1 ) ) = ( ( 𝑀 ... 𝑦 ) ∪ { ( 𝑦 + 1 ) } ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( 𝑀 ... ( 𝑦 + 1 ) ) = ( ( 𝑀 ... 𝑦 ) ∪ { ( 𝑦 + 1 ) } ) ) |
| 28 |
1 4 8 9 23 25 27
|
gsummptfidmsplit |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑖 ∈ { ( 𝑦 + 1 ) } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑖 ∈ { ( 𝑦 + 1 ) } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) ) |
| 30 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 31 |
11
|
grpmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 32 |
31
|
ad2antrl |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → 𝐺 ∈ Mnd ) |
| 33 |
|
ovexd |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( 𝑦 + 1 ) ∈ V ) |
| 34 |
|
peano2uz |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 35 |
|
eluzfz2 |
⊢ ( ( 𝑦 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ) |
| 36 |
34 35
|
syl |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ) |
| 37 |
|
fzelp1 |
⊢ ( ( 𝑦 + 1 ) ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) → ( 𝑦 + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 38 |
36 37
|
syl |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 39 |
|
rspcsbela |
⊢ ( ( ( 𝑦 + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 40 |
38 15 39
|
syl2an |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 41 |
|
peano2uz |
⊢ ( ( 𝑦 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 42 |
34 41
|
syl |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 43 |
|
eluzfz2 |
⊢ ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 44 |
42 43
|
syl |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 45 |
|
rspcsbela |
⊢ ( ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 46 |
44 15 45
|
syl2an |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 47 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 48 |
12 40 46 47
|
syl3anc |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 49 |
|
csbeq1 |
⊢ ( 𝑖 = ( 𝑦 + 1 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 50 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝑦 + 1 ) → ( 𝑖 + 1 ) = ( ( 𝑦 + 1 ) + 1 ) ) |
| 51 |
50
|
csbeq1d |
⊢ ( 𝑖 = ( 𝑦 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 52 |
49 51
|
oveq12d |
⊢ ( 𝑖 = ( 𝑦 + 1 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ 𝑖 = ( 𝑦 + 1 ) ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 54 |
1 32 33 48 53
|
gsumsnd |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( 𝐺 Σg ( 𝑖 ∈ { ( 𝑦 + 1 ) } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 55 |
54
|
adantr |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( 𝐺 Σg ( 𝑖 ∈ { ( 𝑦 + 1 ) } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 56 |
30 55
|
oveq12d |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑖 ∈ { ( 𝑦 + 1 ) } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) = ( ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ( +g ‘ 𝐺 ) ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 57 |
|
eluzfz1 |
⊢ ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 58 |
42 57
|
syl |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 59 |
|
rspcsbela |
⊢ ( ( 𝑀 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 60 |
58 15 59
|
syl2an |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 61 |
1 4 3
|
grpnpncan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) ) → ( ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ( +g ‘ 𝐺 ) ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 62 |
12 60 40 46 61
|
syl13anc |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ( +g ‘ 𝐺 ) ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 63 |
62
|
adantr |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ( +g ‘ 𝐺 ) ( ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 64 |
29 56 63
|
3eqtrd |
⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ∧ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 65 |
64
|
ex |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |