| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpsubadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grpsubadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
grpsubadd.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 5 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) ∈ 𝐵 ) |
| 6 |
5
|
3adant3r3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − 𝑌 ) ∈ 𝐵 ) |
| 7 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 8 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
| 9 |
1 2 3
|
grpaddsubass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑋 − 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 − 𝑌 ) + 𝑌 ) − 𝑍 ) = ( ( 𝑋 − 𝑌 ) + ( 𝑌 − 𝑍 ) ) ) |
| 10 |
4 6 7 8 9
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 − 𝑌 ) + 𝑌 ) − 𝑍 ) = ( ( 𝑋 − 𝑌 ) + ( 𝑌 − 𝑍 ) ) ) |
| 11 |
1 2 3
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 − 𝑌 ) + 𝑌 ) = 𝑋 ) |
| 12 |
11
|
3adant3r3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) + 𝑌 ) = 𝑋 ) |
| 13 |
12
|
oveq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 − 𝑌 ) + 𝑌 ) − 𝑍 ) = ( 𝑋 − 𝑍 ) ) |
| 14 |
10 13
|
eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) + ( 𝑌 − 𝑍 ) ) = ( 𝑋 − 𝑍 ) ) |