Step |
Hyp |
Ref |
Expression |
1 |
|
subcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
3 |
|
addsubass |
⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 − 𝐵 ) + 𝐵 ) − 𝐶 ) = ( ( 𝐴 − 𝐵 ) + ( 𝐵 − 𝐶 ) ) ) |
4 |
2 3
|
syld3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 − 𝐵 ) + 𝐵 ) − 𝐶 ) = ( ( 𝐴 − 𝐵 ) + ( 𝐵 − 𝐶 ) ) ) |
5 |
|
npcan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + 𝐵 ) = 𝐴 ) |
6 |
5
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 − 𝐵 ) + 𝐵 ) − 𝐶 ) = ( 𝐴 − 𝐶 ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 − 𝐵 ) + 𝐵 ) − 𝐶 ) = ( 𝐴 − 𝐶 ) ) |
8 |
4 7
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + ( 𝐵 − 𝐶 ) ) = ( 𝐴 − 𝐶 ) ) |