Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
npncan
Next ⟩
nppcan
Metamath Proof Explorer
Ascii
Unicode
Theorem
npncan
Description:
Cancellation law for subtraction.
(Contributed by
NM
, 8-Feb-2005)
Ref
Expression
Assertion
npncan
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
+
B
-
C
=
A
−
C
Proof
Step
Hyp
Ref
Expression
1
subcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
∈
ℂ
2
1
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
∈
ℂ
3
addsubass
⊢
A
−
B
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
+
B
-
C
=
A
−
B
+
B
-
C
4
2
3
syld3an1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
+
B
-
C
=
A
−
B
+
B
-
C
5
npcan
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
-
B
+
B
=
A
6
5
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
+
B
-
C
=
A
−
C
7
6
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
+
B
-
C
=
A
−
C
8
4
7
eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
+
B
-
C
=
A
−
C