| Step |
Hyp |
Ref |
Expression |
| 1 |
|
telgsumfzs.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
telgsumfzs.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 3 |
|
telgsumfzs.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
telgsumfzs.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 |
|
telgsumfzs.f |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 ) |
| 6 |
|
oveq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 + 1 ) = ( 𝑀 + 1 ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑥 = 𝑀 → ( 𝑀 ... ( 𝑥 + 1 ) ) = ( 𝑀 ... ( 𝑀 + 1 ) ) ) |
| 8 |
7
|
raleqdv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ↔ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 9 |
8
|
anbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑀 ) ) |
| 11 |
10
|
mpteq1d |
⊢ ( 𝑥 = 𝑀 → ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑥 = 𝑀 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 13 |
6
|
csbeq1d |
⊢ ( 𝑥 = 𝑀 → ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 = ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑥 = 𝑀 → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 15 |
12 14
|
eqeq12d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ↔ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 16 |
9 15
|
imbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 1 ) = ( 𝑦 + 1 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑀 ... ( 𝑥 + 1 ) ) = ( 𝑀 ... ( 𝑦 + 1 ) ) ) |
| 19 |
18
|
raleqdv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ↔ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 20 |
19
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑦 ) ) |
| 22 |
21
|
mpteq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 24 |
17
|
csbeq1d |
⊢ ( 𝑥 = 𝑦 → ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 = ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 26 |
23 25
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ↔ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 27 |
20 26
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 28 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 + 1 ) = ( ( 𝑦 + 1 ) + 1 ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑀 ... ( 𝑥 + 1 ) ) = ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 30 |
29
|
raleqdv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ↔ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 31 |
30
|
anbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) ) |
| 32 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... ( 𝑦 + 1 ) ) ) |
| 33 |
32
|
mpteq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 35 |
28
|
csbeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 = ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 37 |
34 36
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ↔ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 38 |
31 37
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 39 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 + 1 ) = ( 𝑁 + 1 ) ) |
| 40 |
39
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝑀 ... ( 𝑥 + 1 ) ) = ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 41 |
40
|
raleqdv |
⊢ ( 𝑥 = 𝑁 → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ↔ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 42 |
41
|
anbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 ) ) ) |
| 43 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑁 ) ) |
| 44 |
43
|
mpteq1d |
⊢ ( 𝑥 = 𝑁 → ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 45 |
44
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 46 |
39
|
csbeq1d |
⊢ ( 𝑥 = 𝑁 → ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 = ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 47 |
46
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 48 |
45 47
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ↔ ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 49 |
42 48
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑥 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑥 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑥 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 50 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 51 |
4 50
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝑀 ∈ ℤ ) |
| 53 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 54 |
52 53
|
syl |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 55 |
54
|
mpteq1d |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) = ( 𝑖 ∈ { 𝑀 } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 56 |
55
|
oveq2d |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ { 𝑀 } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 57 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 58 |
2 57
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 59 |
58
|
grpmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) |
| 61 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
| 62 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 63 |
52 62
|
syl |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 64 |
|
peano2uz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 65 |
63 64
|
syl |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 66 |
|
eluzfz1 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ) |
| 67 |
65 66
|
syl |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → 𝑀 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ) |
| 68 |
|
rspcsbela |
⊢ ( ( 𝑀 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 69 |
67 68
|
sylancom |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 70 |
|
eluzfz2 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ) |
| 71 |
65 70
|
syl |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝑀 + 1 ) ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ) |
| 72 |
|
rspcsbela |
⊢ ( ( ( 𝑀 + 1 ) ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 73 |
71 72
|
sylancom |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 74 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 75 |
61 69 73 74
|
syl3anc |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
| 76 |
|
csbeq1 |
⊢ ( 𝑖 = 𝑀 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = ⦋ 𝑀 / 𝑘 ⦌ 𝐶 ) |
| 77 |
|
oveq1 |
⊢ ( 𝑖 = 𝑀 → ( 𝑖 + 1 ) = ( 𝑀 + 1 ) ) |
| 78 |
77
|
csbeq1d |
⊢ ( 𝑖 = 𝑀 → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) |
| 79 |
76 78
|
oveq12d |
⊢ ( 𝑖 = 𝑀 → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 80 |
79
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) ∧ 𝑖 = 𝑀 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 81 |
1 60 52 75 80
|
gsumsnd |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ { 𝑀 } ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 82 |
56 81
|
eqtrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑀 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑀 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑀 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
| 83 |
1 2 3
|
telgsumfzslem |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) ) → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 84 |
83
|
ex |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ( ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 85 |
|
eluzelz |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑦 ∈ ℤ ) |
| 86 |
85
|
peano2zd |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ∈ ℤ ) |
| 87 |
86
|
peano2zd |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ℤ ) |
| 88 |
|
peano2z |
⊢ ( 𝑦 ∈ ℤ → ( 𝑦 + 1 ) ∈ ℤ ) |
| 89 |
88
|
zred |
⊢ ( 𝑦 ∈ ℤ → ( 𝑦 + 1 ) ∈ ℝ ) |
| 90 |
85 89
|
syl |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 91 |
90
|
lep1d |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑦 + 1 ) ≤ ( ( 𝑦 + 1 ) + 1 ) ) |
| 92 |
|
eluz2 |
⊢ ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑦 + 1 ) ) ↔ ( ( 𝑦 + 1 ) ∈ ℤ ∧ ( ( 𝑦 + 1 ) + 1 ) ∈ ℤ ∧ ( 𝑦 + 1 ) ≤ ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 93 |
86 87 91 92
|
syl3anbrc |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑦 + 1 ) ) ) |
| 94 |
|
fzss2 |
⊢ ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑦 + 1 ) ) → ( 𝑀 ... ( 𝑦 + 1 ) ) ⊆ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 95 |
93 94
|
syl |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( 𝑦 + 1 ) ) ⊆ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) ) |
| 96 |
|
ssralv |
⊢ ( ( 𝑀 ... ( 𝑦 + 1 ) ) ⊆ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) → ( ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 97 |
95 96
|
syl |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 98 |
97
|
adantld |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
| 99 |
84 98
|
a2and |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑦 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑦 + 1 ) / 𝑘 ⦌ 𝐶 ) ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( ( 𝑦 + 1 ) + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... ( 𝑦 + 1 ) ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( ( 𝑦 + 1 ) + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 100 |
16 27 38 49 82 99
|
uzind4i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 101 |
100
|
expd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
| 102 |
4 101
|
mpcom |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐶 ∈ 𝐵 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) |
| 103 |
5 102
|
mpd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 𝑀 ... 𝑁 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 𝑀 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑁 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |