| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmadugsum.a |
|
| 2 |
|
cpmadugsum.b |
|
| 3 |
|
cpmadugsum.p |
|
| 4 |
|
cpmadugsum.y |
|
| 5 |
|
cpmadugsum.t |
|
| 6 |
|
cpmadugsum.x |
|
| 7 |
|
cpmadugsum.e |
|
| 8 |
|
cpmadugsum.m |
|
| 9 |
|
cpmadugsum.r |
|
| 10 |
|
cpmadugsum.1 |
|
| 11 |
|
cpmadugsum.g |
|
| 12 |
|
cpmadugsum.s |
|
| 13 |
|
cpmadugsum.i |
|
| 14 |
|
cpmadugsum.j |
|
| 15 |
|
cpmadugsum.0 |
|
| 16 |
|
cpmadugsum.g2 |
|
| 17 |
|
cpmidgsum2.c |
|
| 18 |
|
cpmidgsum2.k |
|
| 19 |
|
cpmidgsum2.h |
|
| 20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
cpmadugsum |
|
| 21 |
|
crngring |
|
| 22 |
21
|
anim2i |
|
| 23 |
22
|
3adant3 |
|
| 24 |
3 4
|
pmatring |
|
| 25 |
|
ringgrp |
|
| 26 |
23 24 25
|
3syl |
|
| 27 |
3 4
|
pmatlmod |
|
| 28 |
21 27
|
sylan2 |
|
| 29 |
21
|
adantl |
|
| 30 |
|
eqid |
|
| 31 |
6 3 30
|
vr1cl |
|
| 32 |
29 31
|
syl |
|
| 33 |
3
|
ply1crng |
|
| 34 |
4
|
matsca2 |
|
| 35 |
33 34
|
sylan2 |
|
| 36 |
35
|
fveq2d |
|
| 37 |
32 36
|
eleqtrd |
|
| 38 |
|
eqid |
|
| 39 |
38 10
|
ringidcl |
|
| 40 |
22 24 39
|
3syl |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
38 41 8 42
|
lmodvscl |
|
| 44 |
28 37 40 43
|
syl3anc |
|
| 45 |
44
|
3adant3 |
|
| 46 |
5 1 2 3 4
|
mat2pmatbas |
|
| 47 |
21 46
|
syl3an2 |
|
| 48 |
38 12
|
grpsubcl |
|
| 49 |
26 45 47 48
|
syl3anc |
|
| 50 |
33
|
3ad2ant2 |
|
| 51 |
|
eqid |
|
| 52 |
4 38 14 51 10 9 8
|
madurid |
|
| 53 |
49 50 52
|
syl2anc |
|
| 54 |
|
id |
|
| 55 |
|
fveq2 |
|
| 56 |
54 55
|
oveq12d |
|
| 57 |
13 56
|
mp1i |
|
| 58 |
17 1 2 3 4 51 12 6 8 5 10
|
chpmatval |
|
| 59 |
18 58
|
eqtrid |
|
| 60 |
59
|
oveq1d |
|
| 61 |
19 60
|
eqtrid |
|
| 62 |
53 57 61
|
3eqtr4rd |
|
| 63 |
62
|
adantr |
|
| 64 |
|
simpr |
|
| 65 |
63 64
|
eqtrd |
|
| 66 |
65
|
ex |
|
| 67 |
66
|
reximdv |
|
| 68 |
67
|
reximdv |
|
| 69 |
20 68
|
mpd |
|