Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | |- V = ( Vtx ` G ) |
|
| crctcsh.i | |- I = ( iEdg ` G ) |
||
| crctcsh.d | |- ( ph -> F ( Circuits ` G ) P ) |
||
| crctcsh.n | |- N = ( # ` F ) |
||
| Assertion | crctcshlem1 | |- ( ph -> N e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | |- V = ( Vtx ` G ) |
|
| 2 | crctcsh.i | |- I = ( iEdg ` G ) |
|
| 3 | crctcsh.d | |- ( ph -> F ( Circuits ` G ) P ) |
|
| 4 | crctcsh.n | |- N = ( # ` F ) |
|
| 5 | crctiswlk | |- ( F ( Circuits ` G ) P -> F ( Walks ` G ) P ) |
|
| 6 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 7 | 4 6 | eqeltrid | |- ( F ( Walks ` G ) P -> N e. NN0 ) |
| 8 | 3 5 7 | 3syl | |- ( ph -> N e. NN0 ) |