Metamath Proof Explorer


Theorem crcts

Description: The set of circuits (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 31-Jan-2021)

Ref Expression
Assertion crcts
|- ( Circuits ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) }

Proof

Step Hyp Ref Expression
1 biidd
 |-  ( ( T. /\ g = G ) -> ( ( p ` 0 ) = ( p ` ( # ` f ) ) <-> ( p ` 0 ) = ( p ` ( # ` f ) ) ) )
2 wksv
 |-  { <. f , p >. | f ( Walks ` G ) p } e. _V
3 trliswlk
 |-  ( f ( Trails ` G ) p -> f ( Walks ` G ) p )
4 3 ssopab2i
 |-  { <. f , p >. | f ( Trails ` G ) p } C_ { <. f , p >. | f ( Walks ` G ) p }
5 2 4 ssexi
 |-  { <. f , p >. | f ( Trails ` G ) p } e. _V
6 5 a1i
 |-  ( T. -> { <. f , p >. | f ( Trails ` G ) p } e. _V )
7 df-crcts
 |-  Circuits = ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } )
8 1 6 7 fvmptopab
 |-  ( T. -> ( Circuits ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } )
9 8 mptru
 |-  ( Circuits ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) }