Metamath Proof Explorer


Theorem cringcat

Description: The restriction of the category of (unital) rings to the set of commutative ring homomorphisms is a category, the "category of commutative rings". (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses crhmsubc.c
|- C = ( U i^i CRing )
crhmsubc.j
|- J = ( r e. C , s e. C |-> ( r RingHom s ) )
Assertion cringcat
|- ( U e. V -> ( ( RingCat ` U ) |`cat J ) e. Cat )

Proof

Step Hyp Ref Expression
1 crhmsubc.c
 |-  C = ( U i^i CRing )
2 crhmsubc.j
 |-  J = ( r e. C , s e. C |-> ( r RingHom s ) )
3 eqid
 |-  ( ( RingCat ` U ) |`cat J ) = ( ( RingCat ` U ) |`cat J )
4 1 2 crhmsubc
 |-  ( U e. V -> J e. ( Subcat ` ( RingCat ` U ) ) )
5 3 4 subccat
 |-  ( U e. V -> ( ( RingCat ` U ) |`cat J ) e. Cat )