Metamath Proof Explorer


Theorem cringcat

Description: The restriction of the category of (unital) rings to the set of commutative ring homomorphisms is a category, the "category of commutative rings". (Contributed by AV, 19-Feb-2020)

Ref Expression
Hypotheses crhmsubc.c 𝐶 = ( 𝑈 ∩ CRing )
crhmsubc.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
Assertion cringcat ( 𝑈𝑉 → ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ∈ Cat )

Proof

Step Hyp Ref Expression
1 crhmsubc.c 𝐶 = ( 𝑈 ∩ CRing )
2 crhmsubc.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
3 eqid ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) = ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 )
4 1 2 crhmsubc ( 𝑈𝑉𝐽 ∈ ( Subcat ‘ ( RingCat ‘ 𝑈 ) ) )
5 3 4 subccat ( 𝑈𝑉 → ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ∈ Cat )