Metamath Proof Explorer


Theorem csb0

Description: The proper substitution of a class into the empty set is the empty set. (Contributed by NM, 18-Aug-2018) Avoid ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion csb0
|- [_ A / x ]_ (/) = (/)

Proof

Step Hyp Ref Expression
1 nfcv
 |-  F/_ x (/)
2 df-csb
 |-  [_ A / x ]_ (/) = { y | [. A / x ]. y e. (/) }
3 dfsbcq2
 |-  ( z = A -> ( [ z / x ] y e. (/) <-> [. A / x ]. y e. (/) ) )
4 3 bibi1d
 |-  ( z = A -> ( ( [ z / x ] y e. (/) <-> y e. (/) ) <-> ( [. A / x ]. y e. (/) <-> y e. (/) ) ) )
5 4 imbi2d
 |-  ( z = A -> ( ( F/ x y e. (/) -> ( [ z / x ] y e. (/) <-> y e. (/) ) ) <-> ( F/ x y e. (/) -> ( [. A / x ]. y e. (/) <-> y e. (/) ) ) ) )
6 sbv
 |-  ( [ z / x ] y e. (/) <-> y e. (/) )
7 6 a1i
 |-  ( F/ x y e. (/) -> ( [ z / x ] y e. (/) <-> y e. (/) ) )
8 5 7 vtoclg
 |-  ( A e. _V -> ( F/ x y e. (/) -> ( [. A / x ]. y e. (/) <-> y e. (/) ) ) )
9 nfcr
 |-  ( F/_ x (/) -> F/ x y e. (/) )
10 8 9 impel
 |-  ( ( A e. _V /\ F/_ x (/) ) -> ( [. A / x ]. y e. (/) <-> y e. (/) ) )
11 10 abbi1dv
 |-  ( ( A e. _V /\ F/_ x (/) ) -> { y | [. A / x ]. y e. (/) } = (/) )
12 2 11 syl5eq
 |-  ( ( A e. _V /\ F/_ x (/) ) -> [_ A / x ]_ (/) = (/) )
13 1 12 mpan2
 |-  ( A e. _V -> [_ A / x ]_ (/) = (/) )
14 csbprc
 |-  ( -. A e. _V -> [_ A / x ]_ (/) = (/) )
15 13 14 pm2.61i
 |-  [_ A / x ]_ (/) = (/)