Metamath Proof Explorer


Theorem csb0

Description: The proper substitution of a class into the empty set is the empty set. (Contributed by NM, 18-Aug-2018)

Ref Expression
Assertion csb0
|- [_ A / x ]_ (/) = (/)

Proof

Step Hyp Ref Expression
1 csbconstg
 |-  ( A e. _V -> [_ A / x ]_ (/) = (/) )
2 csbprc
 |-  ( -. A e. _V -> [_ A / x ]_ (/) = (/) )
3 1 2 pm2.61i
 |-  [_ A / x ]_ (/) = (/)