Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005) (Revised by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csbeq2d.1 | |- F/ x ph | |
| csbeq2d.2 | |- ( ph -> B = C ) | ||
| Assertion | csbeq2d | |- ( ph -> [_ A / x ]_ B = [_ A / x ]_ C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | csbeq2d.1 | |- F/ x ph | |
| 2 | csbeq2d.2 | |- ( ph -> B = C ) | |
| 3 | 2 | eleq2d | |- ( ph -> ( y e. B <-> y e. C ) ) | 
| 4 | 1 3 | sbcbid | |- ( ph -> ( [. A / x ]. y e. B <-> [. A / x ]. y e. C ) ) | 
| 5 | 4 | abbidv |  |-  ( ph -> { y | [. A / x ]. y e. B } = { y | [. A / x ]. y e. C } ) | 
| 6 | df-csb |  |-  [_ A / x ]_ B = { y | [. A / x ]. y e. B } | |
| 7 | df-csb |  |-  [_ A / x ]_ C = { y | [. A / x ]. y e. C } | |
| 8 | 5 6 7 | 3eqtr4g | |- ( ph -> [_ A / x ]_ B = [_ A / x ]_ C ) |