| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
|- (. A e. V ->. A e. V ). |
| 2 |
|
spsbc |
|- ( A e. V -> ( A. x B = C -> [. A / x ]. B = C ) ) |
| 3 |
1 2
|
e1a |
|- (. A e. V ->. ( A. x B = C -> [. A / x ]. B = C ) ). |
| 4 |
|
sbceqg |
|- ( A e. V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) ) |
| 5 |
1 4
|
e1a |
|- (. A e. V ->. ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) ). |
| 6 |
|
imbi2 |
|- ( ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) -> ( ( A. x B = C -> [. A / x ]. B = C ) <-> ( A. x B = C -> [_ A / x ]_ B = [_ A / x ]_ C ) ) ) |
| 7 |
6
|
biimpcd |
|- ( ( A. x B = C -> [. A / x ]. B = C ) -> ( ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) -> ( A. x B = C -> [_ A / x ]_ B = [_ A / x ]_ C ) ) ) |
| 8 |
3 5 7
|
e11 |
|- (. A e. V ->. ( A. x B = C -> [_ A / x ]_ B = [_ A / x ]_ C ) ). |
| 9 |
8
|
in1 |
|- ( A e. V -> ( A. x B = C -> [_ A / x ]_ B = [_ A / x ]_ C ) ) |