Metamath Proof Explorer


Theorem spsbc

Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of Quine p. 44. This is Frege's ninth axiom per Proposition 58 of Frege1879 p. 51. See also stdpc4 and rspsbc . (Contributed by NM, 16-Jan-2004)

Ref Expression
Assertion spsbc
|- ( A e. V -> ( A. x ph -> [. A / x ]. ph ) )

Proof

Step Hyp Ref Expression
1 stdpc4
 |-  ( A. x ph -> [ y / x ] ph )
2 sbsbc
 |-  ( [ y / x ] ph <-> [. y / x ]. ph )
3 1 2 sylib
 |-  ( A. x ph -> [. y / x ]. ph )
4 dfsbcq
 |-  ( y = A -> ( [. y / x ]. ph <-> [. A / x ]. ph ) )
5 3 4 syl5ib
 |-  ( y = A -> ( A. x ph -> [. A / x ]. ph ) )
6 5 vtocleg
 |-  ( A e. V -> ( A. x ph -> [. A / x ]. ph ) )