| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
|- (. A e. C ->. A e. C ). |
| 2 |
|
csbres |
|- [_ A / x ]_ ( F |` B ) = ( [_ A / x ]_ F |` [_ A / x ]_ B ) |
| 3 |
2
|
a1i |
|- ( A e. C -> [_ A / x ]_ ( F |` B ) = ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) |
| 4 |
1 3
|
e1a |
|- (. A e. C ->. [_ A / x ]_ ( F |` B ) = ( [_ A / x ]_ F |` [_ A / x ]_ B ) ). |
| 5 |
|
rneq |
|- ( [_ A / x ]_ ( F |` B ) = ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ran [_ A / x ]_ ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) |
| 6 |
4 5
|
e1a |
|- (. A e. C ->. ran [_ A / x ]_ ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ). |
| 7 |
|
csbrn |
|- [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) |
| 8 |
7
|
a1i |
|- ( A e. C -> [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) ) |
| 9 |
1 8
|
e1a |
|- (. A e. C ->. [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) ). |
| 10 |
|
eqeq2 |
|- ( ran [_ A / x ]_ ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) <-> [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) |
| 11 |
10
|
biimpd |
|- ( ran [_ A / x ]_ ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) -> [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) |
| 12 |
6 9 11
|
e11 |
|- (. A e. C ->. [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ). |
| 13 |
|
df-ima |
|- ( F " B ) = ran ( F |` B ) |
| 14 |
13
|
ax-gen |
|- A. x ( F " B ) = ran ( F |` B ) |
| 15 |
|
csbeq2 |
|- ( A. x ( F " B ) = ran ( F |` B ) -> [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) ) |
| 16 |
15
|
a1i |
|- ( A e. C -> ( A. x ( F " B ) = ran ( F |` B ) -> [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) ) ) |
| 17 |
1 14 16
|
e10 |
|- (. A e. C ->. [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) ). |
| 18 |
|
eqeq2 |
|- ( [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) <-> [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) |
| 19 |
18
|
biimpd |
|- ( [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) -> [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) |
| 20 |
12 17 19
|
e11 |
|- (. A e. C ->. [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ). |
| 21 |
|
df-ima |
|- ( [_ A / x ]_ F " [_ A / x ]_ B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) |
| 22 |
|
eqeq2 |
|- ( ( [_ A / x ]_ F " [_ A / x ]_ B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) <-> [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) |
| 23 |
22
|
biimprcd |
|- ( [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( ( [_ A / x ]_ F " [_ A / x ]_ B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) ) ) |
| 24 |
20 21 23
|
e10 |
|- (. A e. C ->. [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) ). |
| 25 |
24
|
in1 |
|- ( A e. C -> [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) ) |