| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idn1 | ⊢ (    𝐴  ∈  𝐶    ▶    𝐴  ∈  𝐶    ) | 
						
							| 2 |  | csbres | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝐴  ∈  𝐶  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 4 | 1 3 | e1a | ⊢ (    𝐴  ∈  𝐶    ▶    ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )    ) | 
						
							| 5 |  | rneq | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  →  ran  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 6 | 4 5 | e1a | ⊢ (    𝐴  ∈  𝐶    ▶    ran  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )    ) | 
						
							| 7 |  | csbrn | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )  =  ran  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐴  ∈  𝐶  →  ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )  =  ran  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 ) ) | 
						
							| 9 | 1 8 | e1a | ⊢ (    𝐴  ∈  𝐶    ▶    ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )  =  ran  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 )    ) | 
						
							| 10 |  | eqeq2 | ⊢ ( ran  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  →  ( ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )  =  ran  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 )  ↔  ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 11 | 10 | biimpd | ⊢ ( ran  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  →  ( ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )  =  ran  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ↾  𝐵 )  →  ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 12 | 6 9 11 | e11 | ⊢ (    𝐴  ∈  𝐶    ▶    ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )    ) | 
						
							| 13 |  | df-ima | ⊢ ( 𝐹  “  𝐵 )  =  ran  ( 𝐹  ↾  𝐵 ) | 
						
							| 14 | 13 | ax-gen | ⊢ ∀ 𝑥 ( 𝐹  “  𝐵 )  =  ran  ( 𝐹  ↾  𝐵 ) | 
						
							| 15 |  | csbeq2 | ⊢ ( ∀ 𝑥 ( 𝐹  “  𝐵 )  =  ran  ( 𝐹  ↾  𝐵 )  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝐴  ∈  𝐶  →  ( ∀ 𝑥 ( 𝐹  “  𝐵 )  =  ran  ( 𝐹  ↾  𝐵 )  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 ) ) ) | 
						
							| 17 | 1 14 16 | e10 | ⊢ (    𝐴  ∈  𝐶    ▶    ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )    ) | 
						
							| 18 |  | eqeq2 | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  →  ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )  ↔  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 19 | 18 | biimpd | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  →  ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ⦋ 𝐴  /  𝑥 ⦌ ran  ( 𝐹  ↾  𝐵 )  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 20 | 12 17 19 | e11 | ⊢ (    𝐴  ∈  𝐶    ▶    ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )    ) | 
						
							| 21 |  | df-ima | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  “  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 22 |  | eqeq2 | ⊢ ( ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  “  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  →  ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  “  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  ↔  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 23 | 22 | biimprcd | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  →  ( ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  “  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  =  ran  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  “  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 24 | 20 21 23 | e10 | ⊢ (    𝐴  ∈  𝐶    ▶    ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  “  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )    ) | 
						
							| 25 | 24 | in1 | ⊢ ( 𝐴  ∈  𝐶  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  “  𝐵 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  “  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) |