| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-res | ⊢ ( 𝐵  ↾  𝐶 )  =  ( 𝐵  ∩  ( 𝐶  ×  V ) ) | 
						
							| 2 | 1 | csbeq2i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵  ↾  𝐶 )  =  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵  ∩  ( 𝐶  ×  V ) ) | 
						
							| 3 |  | csbxp | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ×  V )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ×  ⦋ 𝐴  /  𝑥 ⦌ V ) | 
						
							| 4 |  | csbconstg | ⊢ ( 𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ V  =  V ) | 
						
							| 5 | 4 | xpeq2d | ⊢ ( 𝐴  ∈  V  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ×  ⦋ 𝐴  /  𝑥 ⦌ V )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ×  V ) ) | 
						
							| 6 | 3 5 | eqtrid | ⊢ ( 𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ×  V )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ×  V ) ) | 
						
							| 7 |  | 0xp | ⊢ ( ∅  ×  V )  =  ∅ | 
						
							| 8 | 7 | a1i | ⊢ ( ¬  𝐴  ∈  V  →  ( ∅  ×  V )  =  ∅ ) | 
						
							| 9 |  | csbprc | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  =  ∅ ) | 
						
							| 10 | 9 | xpeq1d | ⊢ ( ¬  𝐴  ∈  V  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ×  V )  =  ( ∅  ×  V ) ) | 
						
							| 11 |  | csbprc | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ×  V )  =  ∅ ) | 
						
							| 12 | 8 10 11 | 3eqtr4rd | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ×  V )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ×  V ) ) | 
						
							| 13 | 6 12 | pm2.61i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ×  V )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ×  V ) | 
						
							| 14 | 13 | ineq2i | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ×  V ) )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∩  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ×  V ) ) | 
						
							| 15 |  | csbin | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵  ∩  ( 𝐶  ×  V ) )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ×  V ) ) | 
						
							| 16 |  | df-res | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∩  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ×  V ) ) | 
						
							| 17 | 14 15 16 | 3eqtr4i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵  ∩  ( 𝐶  ×  V ) )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) | 
						
							| 18 | 2 17 | eqtri | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵  ↾  𝐶 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ↾  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) |