Metamath Proof Explorer


Theorem csbres

Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012) (Revised by NM, 23-Aug-2018)

Ref Expression
Assertion csbres A/xBC=A/xBA/xC

Proof

Step Hyp Ref Expression
1 df-res BC=BC×V
2 1 csbeq2i A/xBC=A/xBC×V
3 csbxp A/xC×V=A/xC×A/xV
4 csbconstg AVA/xV=V
5 4 xpeq2d AVA/xC×A/xV=A/xC×V
6 3 5 eqtrid AVA/xC×V=A/xC×V
7 0xp ×V=
8 7 a1i ¬AV×V=
9 csbprc ¬AVA/xC=
10 9 xpeq1d ¬AVA/xC×V=×V
11 csbprc ¬AVA/xC×V=
12 8 10 11 3eqtr4rd ¬AVA/xC×V=A/xC×V
13 6 12 pm2.61i A/xC×V=A/xC×V
14 13 ineq2i A/xBA/xC×V=A/xBA/xC×V
15 csbin A/xBC×V=A/xBA/xC×V
16 df-res A/xBA/xC=A/xBA/xC×V
17 14 15 16 3eqtr4i A/xBC×V=A/xBA/xC
18 2 17 eqtri A/xBC=A/xBA/xC