| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbab |
|
| 2 |
|
sbcex2 |
|
| 3 |
|
sbcex2 |
|
| 4 |
|
sbcan |
|
| 5 |
|
sbcg |
|
| 6 |
|
sbcan |
|
| 7 |
|
sbcel2 |
|
| 8 |
|
sbcel2 |
|
| 9 |
7 8
|
anbi12i |
|
| 10 |
6 9
|
bitri |
|
| 11 |
10
|
a1i |
|
| 12 |
5 11
|
anbi12d |
|
| 13 |
|
sbcex |
|
| 14 |
13
|
con3i |
|
| 15 |
14
|
intnand |
|
| 16 |
|
noel |
|
| 17 |
16
|
a1i |
|
| 18 |
|
csbprc |
|
| 19 |
17 18
|
neleqtrrd |
|
| 20 |
19
|
intnand |
|
| 21 |
20
|
intnand |
|
| 22 |
15 21
|
2falsed |
|
| 23 |
12 22
|
pm2.61i |
|
| 24 |
4 23
|
bitri |
|
| 25 |
24
|
exbii |
|
| 26 |
3 25
|
bitri |
|
| 27 |
26
|
exbii |
|
| 28 |
2 27
|
bitri |
|
| 29 |
28
|
abbii |
|
| 30 |
1 29
|
eqtri |
|
| 31 |
|
df-xp |
|
| 32 |
|
df-opab |
|
| 33 |
31 32
|
eqtri |
|
| 34 |
33
|
csbeq2i |
|
| 35 |
|
df-xp |
|
| 36 |
|
df-opab |
|
| 37 |
35 36
|
eqtri |
|
| 38 |
30 34 37
|
3eqtr4i |
|