Metamath Proof Explorer


Theorem neleqtrrd

Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 13-Nov-2019)

Ref Expression
Hypotheses neleqtrrd.1 φ¬CB
neleqtrrd.2 φA=B
Assertion neleqtrrd φ¬CA

Proof

Step Hyp Ref Expression
1 neleqtrrd.1 φ¬CB
2 neleqtrrd.2 φA=B
3 2 eqcomd φB=A
4 1 3 neleqtrd φ¬CA