Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 13-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | neleqtrrd.1 | |
|
neleqtrrd.2 | |
||
Assertion | neleqtrrd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrrd.1 | |
|
2 | neleqtrrd.2 | |
|
3 | 2 | eqcomd | |
4 | 1 3 | neleqtrd | |