Metamath Proof Explorer


Theorem neleqtrd

Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses neleqtrd.1 φ ¬ C A
neleqtrd.2 φ A = B
Assertion neleqtrd φ ¬ C B

Proof

Step Hyp Ref Expression
1 neleqtrd.1 φ ¬ C A
2 neleqtrd.2 φ A = B
3 2 eleq2d φ C A C B
4 1 3 mtbid φ ¬ C B