Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | neleqtrd.1 | |- ( ph -> -. C e. A ) |
|
| neleqtrd.2 | |- ( ph -> A = B ) |
||
| Assertion | neleqtrd | |- ( ph -> -. C e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleqtrd.1 | |- ( ph -> -. C e. A ) |
|
| 2 | neleqtrd.2 | |- ( ph -> A = B ) |
|
| 3 | 2 | eleq2d | |- ( ph -> ( C e. A <-> C e. B ) ) |
| 4 | 1 3 | mtbid | |- ( ph -> -. C e. B ) |