Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | neleqtrd.1 | |- ( ph -> -. C e. A ) |
|
neleqtrd.2 | |- ( ph -> A = B ) |
||
Assertion | neleqtrd | |- ( ph -> -. C e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrd.1 | |- ( ph -> -. C e. A ) |
|
2 | neleqtrd.2 | |- ( ph -> A = B ) |
|
3 | 2 | eleq2d | |- ( ph -> ( C e. A <-> C e. B ) ) |
4 | 1 3 | mtbid | |- ( ph -> -. C e. B ) |