Metamath Proof Explorer


Theorem neleqtrd

Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses neleqtrd.1
|- ( ph -> -. C e. A )
neleqtrd.2
|- ( ph -> A = B )
Assertion neleqtrd
|- ( ph -> -. C e. B )

Proof

Step Hyp Ref Expression
1 neleqtrd.1
 |-  ( ph -> -. C e. A )
2 neleqtrd.2
 |-  ( ph -> A = B )
3 2 eleq2d
 |-  ( ph -> ( C e. A <-> C e. B ) )
4 1 3 mtbid
 |-  ( ph -> -. C e. B )