Metamath Proof Explorer


Theorem neleqtrd

Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses neleqtrd.1 ( 𝜑 → ¬ 𝐶𝐴 )
neleqtrd.2 ( 𝜑𝐴 = 𝐵 )
Assertion neleqtrd ( 𝜑 → ¬ 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 neleqtrd.1 ( 𝜑 → ¬ 𝐶𝐴 )
2 neleqtrd.2 ( 𝜑𝐴 = 𝐵 )
3 2 eleq2d ( 𝜑 → ( 𝐶𝐴𝐶𝐵 ) )
4 1 3 mtbid ( 𝜑 → ¬ 𝐶𝐵 )