| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							csbima12 | 
							⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵  “  V )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  “  ⦋ 𝐴  /  𝑥 ⦌ V )  | 
						
						
							| 2 | 
							
								
							 | 
							csbconstg | 
							⊢ ( 𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ V  =  V )  | 
						
						
							| 3 | 
							
								2
							 | 
							imaeq2d | 
							⊢ ( 𝐴  ∈  V  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  “  ⦋ 𝐴  /  𝑥 ⦌ V )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  “  V ) )  | 
						
						
							| 4 | 
							
								
							 | 
							0ima | 
							⊢ ( ∅  “  V )  =  ∅  | 
						
						
							| 5 | 
							
								4
							 | 
							eqcomi | 
							⊢ ∅  =  ( ∅  “  V )  | 
						
						
							| 6 | 
							
								
							 | 
							csbprc | 
							⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  ∅ )  | 
						
						
							| 7 | 
							
								6
							 | 
							imaeq1d | 
							⊢ ( ¬  𝐴  ∈  V  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  “  ⦋ 𝐴  /  𝑥 ⦌ V )  =  ( ∅  “  ⦋ 𝐴  /  𝑥 ⦌ V ) )  | 
						
						
							| 8 | 
							
								
							 | 
							0ima | 
							⊢ ( ∅  “  ⦋ 𝐴  /  𝑥 ⦌ V )  =  ∅  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtrdi | 
							⊢ ( ¬  𝐴  ∈  V  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  “  ⦋ 𝐴  /  𝑥 ⦌ V )  =  ∅ )  | 
						
						
							| 10 | 
							
								6
							 | 
							imaeq1d | 
							⊢ ( ¬  𝐴  ∈  V  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  “  V )  =  ( ∅  “  V ) )  | 
						
						
							| 11 | 
							
								5 9 10
							 | 
							3eqtr4a | 
							⊢ ( ¬  𝐴  ∈  V  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  “  ⦋ 𝐴  /  𝑥 ⦌ V )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  “  V ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							pm2.61i | 
							⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  “  ⦋ 𝐴  /  𝑥 ⦌ V )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  “  V )  | 
						
						
							| 13 | 
							
								1 12
							 | 
							eqtri | 
							⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵  “  V )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  “  V )  | 
						
						
							| 14 | 
							
								
							 | 
							dfrn4 | 
							⊢ ran  𝐵  =  ( 𝐵  “  V )  | 
						
						
							| 15 | 
							
								14
							 | 
							csbeq2i | 
							⊢ ⦋ 𝐴  /  𝑥 ⦌ ran  𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵  “  V )  | 
						
						
							| 16 | 
							
								
							 | 
							dfrn4 | 
							⊢ ran  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  “  V )  | 
						
						
							| 17 | 
							
								13 15 16
							 | 
							3eqtr4i | 
							⊢ ⦋ 𝐴  /  𝑥 ⦌ ran  𝐵  =  ran  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  |