Metamath Proof Explorer


Theorem csbrn

Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012)

Ref Expression
Assertion csbrn A/xranB=ranA/xB

Proof

Step Hyp Ref Expression
1 csbima12 A/xBV=A/xBA/xV
2 csbconstg AVA/xV=V
3 2 imaeq2d AVA/xBA/xV=A/xBV
4 0ima V=
5 4 eqcomi =V
6 csbprc ¬AVA/xB=
7 6 imaeq1d ¬AVA/xBA/xV=A/xV
8 0ima A/xV=
9 7 8 eqtrdi ¬AVA/xBA/xV=
10 6 imaeq1d ¬AVA/xBV=V
11 5 9 10 3eqtr4a ¬AVA/xBA/xV=A/xBV
12 3 11 pm2.61i A/xBA/xV=A/xBV
13 1 12 eqtri A/xBV=A/xBV
14 dfrn4 ranB=BV
15 14 csbeq2i A/xranB=A/xBV
16 dfrn4 ranA/xB=A/xBV
17 13 15 16 3eqtr4i A/xranB=ranA/xB