| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idn1 | ⊢ (    𝐴  ∈  𝑉    ▶    𝐴  ∈  𝑉    ) | 
						
							| 2 |  | sbcg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ↔  𝑧  ∈  𝑦 ) ) | 
						
							| 3 | 1 2 | e1a | ⊢ (    𝐴  ∈  𝑉    ▶    ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ↔  𝑧  ∈  𝑦 )    ) | 
						
							| 4 |  | sbcel2 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 6 | 1 5 | e1a | ⊢ (    𝐴  ∈  𝑉    ▶    ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )    ) | 
						
							| 7 |  | pm4.38 | ⊢ ( ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ↔  𝑧  ∈  𝑦 )  ∧  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )  →  ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 8 | 7 | ex | ⊢ ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ↔  𝑧  ∈  𝑦 )  →  ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 )  →  ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) ) | 
						
							| 9 | 3 6 8 | e11 | ⊢ (    𝐴  ∈  𝑉    ▶    ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )    ) | 
						
							| 10 |  | sbcan | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 ) ) ) | 
						
							| 12 | 1 11 | e1a | ⊢ (    𝐴  ∈  𝑉    ▶    ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 ) )    ) | 
						
							| 13 |  | bibi1 | ⊢ ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 ) )  →  ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )  ↔  ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) ) | 
						
							| 14 | 13 | biimprcd | ⊢ ( ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )  →  ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 ) )  →  ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) ) | 
						
							| 15 | 9 12 14 | e11 | ⊢ (    𝐴  ∈  𝑉    ▶    ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )    ) | 
						
							| 16 | 15 | gen11 | ⊢ (    𝐴  ∈  𝑉    ▶    ∀ 𝑦 ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )    ) | 
						
							| 17 |  | exbi | ⊢ ( ∀ 𝑦 ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )  →  ( ∃ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 18 | 16 17 | e1a | ⊢ (    𝐴  ∈  𝑉    ▶    ( ∃ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )    ) | 
						
							| 19 |  | sbcex2 | ⊢ ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 20 | 19 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 21 | 1 20 | e1a | ⊢ (    𝐴  ∈  𝑉    ▶    ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) )    ) | 
						
							| 22 |  | bibi1 | ⊢ ( ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) )  →  ( ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )  ↔  ( ∃ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) ) | 
						
							| 23 | 22 | biimprcd | ⊢ ( ( ∃ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )  →  ( ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) )  →  ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) ) | 
						
							| 24 | 18 21 23 | e11 | ⊢ (    𝐴  ∈  𝑉    ▶    ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )    ) | 
						
							| 25 | 24 | gen11 | ⊢ (    𝐴  ∈  𝑉    ▶    ∀ 𝑧 ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )    ) | 
						
							| 26 |  | abbib | ⊢ ( { 𝑧  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) }  ↔  ∀ 𝑧 ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 27 | 26 | biimpri | ⊢ ( ∀ 𝑧 ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) )  →  { 𝑧  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) } ) | 
						
							| 28 | 25 27 | e1a | ⊢ (    𝐴  ∈  𝑉    ▶    { 𝑧  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) }    ) | 
						
							| 29 |  | csbab | ⊢ ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) } | 
						
							| 30 | 29 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) } ) | 
						
							| 31 | 1 30 | e1a | ⊢ (    𝐴  ∈  𝑉    ▶    ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }    ) | 
						
							| 32 |  | eqeq2 | ⊢ ( { 𝑧  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) }  →  ( ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  ↔  ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) } ) ) | 
						
							| 33 | 32 | biimpd | ⊢ ( { 𝑧  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) }  →  ( ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  →  ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) } ) ) | 
						
							| 34 | 28 31 33 | e11 | ⊢ (    𝐴  ∈  𝑉    ▶    ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) }    ) | 
						
							| 35 |  | df-uni | ⊢ ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) } | 
						
							| 36 | 35 | ax-gen | ⊢ ∀ 𝑥 ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) } | 
						
							| 37 |  | spsbc | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑥 ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  →  [ 𝐴  /  𝑥 ] ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) } ) ) | 
						
							| 38 | 1 36 37 | e10 | ⊢ (    𝐴  ∈  𝑉    ▶    [ 𝐴  /  𝑥 ] ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }    ) | 
						
							| 39 |  | sbceqg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  ↔  ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) } ) ) | 
						
							| 40 | 39 | biimpd | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  →  ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) } ) ) | 
						
							| 41 | 1 38 40 | e11 | ⊢ (    𝐴  ∈  𝑉    ▶    ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }    ) | 
						
							| 42 |  | eqeq2 | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) }  →  ( ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  ↔  ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) } ) ) | 
						
							| 43 | 42 | biimpd | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) }  →  ( ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  →  ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) } ) ) | 
						
							| 44 | 34 41 43 | e11 | ⊢ (    𝐴  ∈  𝑉    ▶    ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) }    ) | 
						
							| 45 |  | df-uni | ⊢ ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) } | 
						
							| 46 |  | eqeq2 | ⊢ ( ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) }  →  ( ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ↔  ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) } ) ) | 
						
							| 47 | 46 | biimprcd | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) }  →  ( ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) }  →  ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 48 | 44 45 47 | e10 | ⊢ (    𝐴  ∈  𝑉    ▶    ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵    ) | 
						
							| 49 | 48 | in1 | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) |