| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbab | ⊢ ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) } | 
						
							| 2 |  | sbcex2 | ⊢ ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 3 |  | sbcan | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 ) ) | 
						
							| 4 |  | sbcg | ⊢ ( 𝐴  ∈  V  →  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ↔  𝑧  ∈  𝑦 ) ) | 
						
							| 5 | 4 | anbi1d | ⊢ ( 𝐴  ∈  V  →  ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 ) ) ) | 
						
							| 6 |  | sbcel2 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 7 | 6 | anbi2i | ⊢ ( ( 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 8 | 5 7 | bitrdi | ⊢ ( 𝐴  ∈  V  →  ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 9 | 3 8 | bitrid | ⊢ ( 𝐴  ∈  V  →  ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 10 | 9 | exbidv | ⊢ ( 𝐴  ∈  V  →  ( ∃ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 11 | 2 10 | bitrid | ⊢ ( 𝐴  ∈  V  →  ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) ) | 
						
							| 12 | 11 | abbidv | ⊢ ( 𝐴  ∈  V  →  { 𝑧  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) } ) | 
						
							| 13 | 1 12 | eqtrid | ⊢ ( 𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) }  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) } ) | 
						
							| 14 |  | df-uni | ⊢ ∪  𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) } | 
						
							| 15 | 14 | csbeq2i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐵 ) } | 
						
							| 16 |  | df-uni | ⊢ ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) } | 
						
							| 17 | 13 15 16 | 3eqtr4g | ⊢ ( 𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 18 |  | csbprc | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ∅ ) | 
						
							| 19 |  | csbprc | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  ∅ ) | 
						
							| 20 | 19 | unieqd | ⊢ ( ¬  𝐴  ∈  V  →  ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  ∪  ∅ ) | 
						
							| 21 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 22 | 20 21 | eqtr2di | ⊢ ( ¬  𝐴  ∈  V  →  ∅  =  ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 23 | 18 22 | eqtrd | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 24 | 17 23 | pm2.61i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ∪  𝐵  =  ∪  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 |