Step |
Hyp |
Ref |
Expression |
1 |
|
cshwcl |
|- ( W e. Word A -> ( W cyclShift N ) e. Word A ) |
2 |
|
wrdf |
|- ( ( W cyclShift N ) e. Word A -> ( W cyclShift N ) : ( 0 ..^ ( # ` ( W cyclShift N ) ) ) --> A ) |
3 |
1 2
|
syl |
|- ( W e. Word A -> ( W cyclShift N ) : ( 0 ..^ ( # ` ( W cyclShift N ) ) ) --> A ) |
4 |
3
|
adantr |
|- ( ( W e. Word A /\ N e. ZZ ) -> ( W cyclShift N ) : ( 0 ..^ ( # ` ( W cyclShift N ) ) ) --> A ) |
5 |
|
cshwlen |
|- ( ( W e. Word A /\ N e. ZZ ) -> ( # ` ( W cyclShift N ) ) = ( # ` W ) ) |
6 |
5
|
oveq2d |
|- ( ( W e. Word A /\ N e. ZZ ) -> ( 0 ..^ ( # ` ( W cyclShift N ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
7 |
6
|
feq2d |
|- ( ( W e. Word A /\ N e. ZZ ) -> ( ( W cyclShift N ) : ( 0 ..^ ( # ` ( W cyclShift N ) ) ) --> A <-> ( W cyclShift N ) : ( 0 ..^ ( # ` W ) ) --> A ) ) |
8 |
4 7
|
mpbid |
|- ( ( W e. Word A /\ N e. ZZ ) -> ( W cyclShift N ) : ( 0 ..^ ( # ` W ) ) --> A ) |