Step |
Hyp |
Ref |
Expression |
1 |
|
cshwcl |
⊢ ( 𝑊 ∈ Word 𝐴 → ( 𝑊 cyclShift 𝑁 ) ∈ Word 𝐴 ) |
2 |
|
wrdf |
⊢ ( ( 𝑊 cyclShift 𝑁 ) ∈ Word 𝐴 → ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) ) ⟶ 𝐴 ) |
3 |
1 2
|
syl |
⊢ ( 𝑊 ∈ Word 𝐴 → ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) ) ⟶ 𝐴 ) |
4 |
3
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) ) ⟶ 𝐴 ) |
5 |
|
cshwlen |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
6 |
5
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
7 |
6
|
feq2d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) ) ⟶ 𝐴 ↔ ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) ) |
8 |
4 7
|
mpbid |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |