Step |
Hyp |
Ref |
Expression |
1 |
|
cshword |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( ( 𝑊 substr ⟨ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) ⟩ ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
2 |
|
swrdcl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 substr ⟨ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) ⟩ ) ∈ Word 𝑉 ) |
3 |
|
pfxcl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ∈ Word 𝑉 ) |
4 |
|
ccatcl |
⊢ ( ( ( 𝑊 substr ⟨ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) ⟩ ) ∈ Word 𝑉 ∧ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ∈ Word 𝑉 ) → ( ( 𝑊 substr ⟨ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) ⟩ ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ∈ Word 𝑉 ) |
5 |
2 3 4
|
syl2anc |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 substr ⟨ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) ⟩ ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ∈ Word 𝑉 ) |
6 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 substr ⟨ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) ⟩ ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ∈ Word 𝑉 ) |
7 |
1 6
|
eqeltrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) ∈ Word 𝑉 ) |
8 |
7
|
expcom |
⊢ ( 𝑁 ∈ ℤ → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 𝑁 ) ∈ Word 𝑉 ) ) |
9 |
|
cshnz |
⊢ ( ¬ 𝑁 ∈ ℤ → ( 𝑊 cyclShift 𝑁 ) = ∅ ) |
10 |
|
wrd0 |
⊢ ∅ ∈ Word 𝑉 |
11 |
9 10
|
eqeltrdi |
⊢ ( ¬ 𝑁 ∈ ℤ → ( 𝑊 cyclShift 𝑁 ) ∈ Word 𝑉 ) |
12 |
11
|
a1d |
⊢ ( ¬ 𝑁 ∈ ℤ → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 𝑁 ) ∈ Word 𝑉 ) ) |
13 |
8 12
|
pm2.61i |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 𝑁 ) ∈ Word 𝑉 ) |